Centroid-Based Library Management and Document Clustering

Author(s):  
Mario Kubek
2018 ◽  
Vol 9 (2) ◽  
pp. 97-105
Author(s):  
Richard Firdaus Oeyliawan ◽  
Dennis Gunawan

Library is one of the facilities which provides information, knowledge resource, and acts as an academic helper for readers to get the information. The huge number of books which library has, usually make readers find the books with difficulty. Universitas Multimedia Nusantara uses the Senayan Library Management System (SLiMS) as the library catalogue. SLiMS has many features which help readers, but there is still no recommendation feature to help the readers finding the books which are relevant to the specific book that readers choose. The application has been developed using Vector Space Model to represent the document in vector model. The recommendation in this application is based on the similarity of the books description. Based on the testing phase using one-language sample of the relevant books, the F-Measure value gained is 55% using 0.1 as cosine similarity threshold. The books description and variety of languages affect the F-Measure value gained. Index Terms—Book Recommendation, Porter Stemmer, SLiMS Universitas Multimedia Nusantara, TF-IDF, Vector Space Model


2019 ◽  
pp. 1-4
Author(s):  
C. T. Kantharaja

Cloud computing technology has signicant role in academic libraries. Most of the library services are available on cloud platform and library software vendors developed their Library Management Software on cloud platform. It is the right time for library professionals to upgrade their technical skills to provide good services to the library stakeholders. This study shows the library services and facilities available on cloud. It is the right time to migrate to cloud


Author(s):  
Laith Mohammad Abualigah ◽  
Essam Said Hanandeh ◽  
Ahamad Tajudin Khader ◽  
Mohammed Abdallh Otair ◽  
Shishir Kumar Shandilya

Background: Considering the increasing volume of text document information on Internet pages, dealing with such a tremendous amount of knowledge becomes totally complex due to its large size. Text clustering is a common optimization problem used to manage a large amount of text information into a subset of comparable and coherent clusters. Aims: This paper presents a novel local clustering technique, namely, β-hill climbing, to solve the problem of the text document clustering through modeling the β-hill climbing technique for partitioning the similar documents into the same cluster. Methods: The β parameter is the primary innovation in β-hill climbing technique. It has been introduced in order to perform a balance between local and global search. Local search methods are successfully applied to solve the problem of the text document clustering such as; k-medoid and kmean techniques. Results: Experiments were conducted on eight benchmark standard text datasets with different characteristics taken from the Laboratory of Computational Intelligence (LABIC). The results proved that the proposed β-hill climbing achieved better results in comparison with the original hill climbing technique in solving the text clustering problem. Conclusion: The performance of the text clustering is useful by adding the β operator to the hill climbing.


Author(s):  
Ruina Bai ◽  
Ruizhang Huang ◽  
Yanping Chen ◽  
Yongbin Qin

2021 ◽  
pp. 106907
Author(s):  
Sahar Behpour ◽  
Mohammadmahdi Mohammadi ◽  
Mark V. Albert ◽  
Zinat S. Alam ◽  
Lingling Wang ◽  
...  

2021 ◽  
Vol 172 ◽  
pp. 114652
Author(s):  
Nabil Alami ◽  
Mohammed Meknassi ◽  
Noureddine En-nahnahi ◽  
Yassine El Adlouni ◽  
Ouafae Ammor

2021 ◽  
pp. 1063293X2098297
Author(s):  
Ivar Örn Arnarsson ◽  
Otto Frost ◽  
Emil Gustavsson ◽  
Mats Jirstrand ◽  
Johan Malmqvist

Product development companies collect data in form of Engineering Change Requests for logged design issues, tests, and product iterations. These documents are rich in unstructured data (e.g. free text). Previous research affirms that product developers find that current IT systems lack capabilities to accurately retrieve relevant documents with unstructured data. In this research, we demonstrate a method using Natural Language Processing and document clustering algorithms to find structurally or contextually related documents from databases containing Engineering Change Request documents. The aim is to radically decrease the time needed to effectively search for related engineering documents, organize search results, and create labeled clusters from these documents by utilizing Natural Language Processing algorithms. A domain knowledge expert at the case company evaluated the results and confirmed that the algorithms we applied managed to find relevant document clusters given the queries tested.


2020 ◽  
Vol 10 (1) ◽  
pp. 1-33
Author(s):  
Ehsan Sherkat ◽  
Evangelos E. Milios ◽  
Rosane Minghim

Sign in / Sign up

Export Citation Format

Share Document