scholarly journals Towards Robust Scenarios of Spatio-Temporal Renewable Energy Planning: A GIS-RO Approach

Author(s):  
Nadeem Al-Kurdi ◽  
Benjamin Pillot ◽  
Carmen Gervet ◽  
Laurent Linguet
Author(s):  
Carlos A. Severiano ◽  
Petrônio de Cândido de Lima e Silva ◽  
Miri Weiss Cohen ◽  
Frederico Gadelha Guimarães

Author(s):  
Ning Zhang ◽  
Chongqing Kang ◽  
Ershun Du ◽  
Yi Wang

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3046 ◽  
Author(s):  
Ole Zelt ◽  
Christine Krüger ◽  
Marina Blohm ◽  
Sönke Bohm ◽  
Shahrazad Far

In recent years, most countries in the Middle East and North Africa (MENA), including Jordan, Morocco and Tunisia, have rolled out national policies with the goal of decarbonising their economies. Energy policy goals in these countries have been characterised by expanding the deployment of renewable energy technologies in the electricity mix in the medium term (i.e., until 2030). This tacitly signals a transformation of socio-technical systems by 2030 and beyond. Nevertheless, how these policy objectives actually translate into future scenarios that can also take into account a long-term perspective up to 2050 and correspond to local preferences remains largely understudied. This paper aims to fill this gap by identifying the most widely preferred long-term electricity scenarios for Jordan, Morocco and Tunisia. During a series of two-day workshops (one in each country), the research team, along with local stakeholders, adopted a participatory approach to develop multiple 2050 electricity scenarios, which enabled electricity pathways to be modelled using Renewable Energy Pathway Simulation System GIS (renpassG!S). We subsequently used the Analytical Hierarchy Process (AHP) within a Multi-Criteria Analysis (MCA) to capture local preferences. The empirical findings show that local stakeholders in all three countries preferred electricity scenarios mainly or even exclusively based on renewables. The findings demonstrate a clear preference for renewable energies and show that useful insights can be generated using participatory approaches to energy planning.


2020 ◽  
Author(s):  
Xianxun Wang

<p>Analysis of correlation among precipitation, wind, and solar resources could explore their complementary features, enhance the utilization efficiency of renewable energy and further alleviate the carbon emission issues caused by fossil energy. In this study, we discuss the correlation between precipitation and wind, wind and solar, precipitation and solar from various Spatio-temporal perspectives (from east to west in China, in terms of plain, plateau, hill, and mountain, from daily to ten days and monthly) with observed data. With investigation of daily time series of precipitation, wind speed and solar radiation ranging from 1961-1-1 to 2016-12-31 of 726 meteorological stations located in various landform and distributed dispersedly in China, the results show that 1) the fluctuation value, quantified by Mei-Wang Fluctuation index, denotes the descending tendency when the time resolution increases, and this tendency is stronger in the southern and eastern China; 2) the correlation coefficient, characterized by Kendall’s rank correlation coefficient, changes from east to west in China, and the strength of this correlation displays certain connection to the local topography (e.g., in Qinghai province which is located in the plateau region the complementarity between precipitation and wind speed is stronger than that between precipitation and solar, the mid-stream basin of Yangtze River where the topography is scattered and complex has the weaker complementarity compared to other areas in China). According to the results of this research, it is helpful from the temporal perspective to understand the requirement of complementarity in the utilization of wind, and solar resources which are intermittent, and from the spatial perspective to know the solution of mitigating fluctuation via integration of multi-renewable energy situated in different locations.</p>


Sign in / Sign up

Export Citation Format

Share Document