Data Augmentation of Minority Class with Transfer Learning for Classification of Imbalanced Breast Cancer Dataset Using Inception-V3

Author(s):  
Manisha Saini ◽  
Seba Susan
2021 ◽  
Author(s):  
Sakkayaphop Pravesjit ◽  
Panchit Longpradit ◽  
Krittika Kantawong ◽  
Rattasak Pengchata ◽  
Norin Oul

2018 ◽  
Vol 12 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Vikas Chaurasia ◽  
Saurabh Pal ◽  
BB Tiwari

Breast cancer is the second most leading cancer occurring in women compared to all other cancers. Around 1.1 million cases were recorded in 2004. Observed rates of this cancer increase with industrialization and urbanization and also with facilities for early detection. It remains much more common in high-income countries but is now increasing rapidly in middle- and low-income countries including within Africa, much of Asia, and Latin America. Breast cancer is fatal in under half of all cases and is the leading cause of death from cancer in women, accounting for 16% of all cancer deaths worldwide. The objective of this research paper is to present a report on breast cancer where we took advantage of those available technological advancements to develop prediction models for breast cancer survivability. We used three popular data mining algorithms (Naïve Bayes, RBF Network, J48) to develop the prediction models using a large dataset (683 breast cancer cases). We also used 10-fold cross-validation methods to measure the unbiased estimate of the three prediction models for performance comparison purposes. The results (based on average accuracy Breast Cancer dataset) indicated that the Naïve Bayes is the best predictor with 97.36% accuracy on the holdout sample (this prediction accuracy is better than any reported in the literature), RBF Network came out to be the second with 96.77% accuracy, J48 came out third with 93.41% accuracy.


Author(s):  
P. Hamsagayathri ◽  
P. Sampath

Breast cancer is one of the dangerous cancers among world’s women above 35 y. The breast is made up of lobules that secrete milk and thin milk ducts to carry milk from lobules to the nipple. Breast cancer mostly occurs either in lobules or in milk ducts. The most common type of breast cancer is ductal carcinoma where it starts from ducts and spreads across the lobules and surrounding tissues. According to the medical survey, each year there are about 125.0 per 100,000 new cases of breast cancer are diagnosed and 21.5 per 100,000 women due to this disease in the United States. Also, 246,660 new cases of women with cancer are estimated for the year 2016. Early diagnosis of breast cancer is a key factor for long-term survival of cancer patients. Classification plays an important role in breast cancer detection and used by researchers to analyse and classify the medical data. In this research work, priority-based decision tree classifier algorithm has been implemented for Wisconsin Breast cancer dataset. This paper analyzes the different decision tree classifier algorithms for Wisconsin original, diagnostic and prognostic dataset using WEKA software. The performance of the classifiers are evaluated against the parameters like accuracy, Kappa statistic, Entropy, RMSE, TP Rate, FP Rate, Precision, Recall, F-Measure, ROC, Specificity, Sensitivity.


2019 ◽  
Vol 8 (4) ◽  
pp. 4879-4881

One of the most dreadful disease is breast cancer and it has a potential cause for death in women. Every year, death rate increases drastically due to breast cancer. An effective way to classify data is through classification or data mining. This becomes very handy, especially in the medical field where diagnosis and analysis are done through these techniques. Wisconsin Breast cancer dataset is used to perform a comparison between SVM, Logistic Regression, Naïve Bayes and Random Forest. Evaluating the correctness in classifying data based on accuracy and time consumption is used to determine the efficiency of the algorithms, which is the main objective. Based on the result of performed experiments, the Random Forest algorithm shows the highest accuracy (99.76%) with the least error rate. ANACONDA Data Science Platform is used to execute all the experiments in a simulated environment.


2020 ◽  
Vol 14 ◽  

Breast Cancer (BC) is amongst the most common and leading causes of deaths in women throughout the world. Recently, classification and data analysis tools are being widely used in the medical field for diagnosis, prognosis and decision making to help lower down the risks of people dying or suffering from diseases. Advanced machine learning methods have proven to give hope for patients as this has helped the doctors in early detection of diseases like Breast Cancer that can be fatal, in support with providing accurate outcomes. However, the results highly depend on the techniques used for feature selection and classification which will produce a strong machine learning model. In this paper, a performance comparison is conducted using four classifiers which are Multilayer Perceptron (MLP), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Random Forest on the Wisconsin Breast Cancer dataset to spot the most effective predictors. The main goal is to apply best machine learning classification methods to predict the Breast Cancer as benign or malignant using terms such as accuracy, f-measure, precision and recall. Experimental results show that Random forest is proven to achieve the highest accuracy of 99.26% on this dataset and features, while SVM and KNN show 97.78% and 97.04% accuracy respectively. MLP shows the least accuracy of 94.07%. All the experiments are conducted using RStudio as the data mining tool platform.


Sign in / Sign up

Export Citation Format

Share Document