A Projected Subgradient Method for Nonsmooth Problems

Author(s):  
Alexander J. Zaslavski
2000 ◽  
Vol 68 (1) ◽  
pp. 101-108 ◽  
Author(s):  
A. R. Hadjesfandiari ◽  
G. F. Dargush

A theory of boundary eigensolutions is presented for boundary value problems in engineering mechanics. While the theory is quite general, the presentation here is restricted to potential problems. Contrary to the traditional approach, the eigenproblem is formed by inserting the eigenparameter, along with a positive weight function, into the boundary condition. The resulting spectra are real and the eigenfunctions are mutually orthogonal on the boundary, thus providing a basis for solutions. The weight function permits effective treatment of nonsmooth problems associated with cracks, notches and mixed boundary conditions. Several ideas related to the convergence characteristics are also introduced. Furthermore, the connection is made to integral equation methods and variational methods. This paves the way toward the development of new computational formulations for finite element and boundary element methods. Two numerical examples are included to illustrate the applicability.


1998 ◽  
Vol 10 (2) ◽  
pp. 197-215
Author(s):  
J. B. G. Frenk ◽  
J. F. Sturm ◽  
S. Zhang

2018 ◽  
Vol 2018 ◽  
pp. 1-27 ◽  
Author(s):  
Claudio Araya-Sassi ◽  
Pablo A. Miranda ◽  
Germán Paredes-Belmar

We studied a joint inventory location problem assuming a periodic review for inventory control. A single plant supplies a set of products to multiple warehouses and they serve a set of customers or retailers. The problem consists in determining which potential warehouses should be opened and which retailers should be served by the selected warehouses as well as their reorder points and order sizes while minimizing the total costs. The problem is a Mixed Integer Nonlinear Programming (MINLP) model, which is nonconvex in terms of stochastic capacity constraints and the objective function. We propose a solution approach based on a Lagrangian relaxation and the subgradient method. The decomposition approach considers the relaxation of different sets of constraints, including customer assignment, warehouse demand, and variance constraints. In addition, we develop a Lagrangian heuristic to determine a feasible solution at each iteration of the subgradient method. The proposed Lagrangian relaxation algorithm provides low duality gaps and near-optimal solutions with competitive computational times. It also shows significant impacts of the selected inventory control policy into total system costs and network configuration, when it is compared with different review period values.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Guo-ji Tang ◽  
Xing Wang

An interior projected-like subgradient method for mixed variational inequalities is proposed in finite dimensional spaces, which is based on using non-Euclidean projection-like operator. Under suitable assumptions, we prove that the sequence generated by the proposed method converges to a solution of the mixed variational inequality. Moreover, we give the convergence estimate of the method. The results presented in this paper generalize some recent results given in the literatures.


Sign in / Sign up

Export Citation Format

Share Document