Norm Inequalities for Generalized Laplace Transforms

Author(s):  
J. C. Kuang
Author(s):  
Viktor Todorov ◽  
George E. Tauchen ◽  
Iaryna Grynkiv

1988 ◽  
Vol 26 (1-2) ◽  
pp. 327-340 ◽  
Author(s):  
Francisco J. Ruiz ◽  
Jose L. Torrea

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Davood Afraz ◽  
Rahmatollah Lashkaripour ◽  
Mojtaba Bakherad

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1273
Author(s):  
Alexander Apelblat ◽  
Armando Consiglio ◽  
Francesco Mainardi

The Bateman functions and the allied Havelock functions were introduced as solutions of some problems in hydrodynamics about ninety years ago, but after a period of one or two decades they were practically neglected. In handbooks, the Bateman function is only mentioned as a particular case of the confluent hypergeometric function. In order to revive our knowledge on these functions, their basic properties (recurrence functional and differential relations, series, integrals and the Laplace transforms) are presented. Some new results are also included. Special attention is directed to the Bateman and Havelock functions with integer orders, to generalizations of these functions and to the Bateman-integral function known in the literature.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Junren Pan ◽  
Wenchang Sun

Abstract In this paper, we introduce a new class of weights, the $A_{\lambda, \infty}$Aλ,∞ weights, which contains the classical $A_{\infty}$A∞ weights. We prove a mixed $A_{p,q}$Ap,q–$A_{\lambda,\infty}$Aλ,∞ type estimate for fractional integral operators.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1288
Author(s):  
Silvestru Sever Dragomir

In this paper we establish some error bounds in approximating the integral by general trapezoid type rules for Fréchet differentiable functions with values in Banach spaces.


1998 ◽  
Vol 20 (1) ◽  
pp. 306-317 ◽  
Author(s):  
Yoshimasa Nakamura
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document