The Central Path

Author(s):  
Robert J. Vanderbei
Keyword(s):  
2020 ◽  
Vol 177 (2) ◽  
pp. 141-156
Author(s):  
Behrouz Kheirfam

In this paper, we propose a Mizuno-Todd-Ye type predictor-corrector infeasible interior-point method for linear optimization based on a wide neighborhood of the central path. According to Ai-Zhang’s original idea, we use two directions of distinct and orthogonal corresponding to the negative and positive parts of the right side vector of the centering equation of the central path. In the predictor stage, the step size along the corresponded infeasible directions to the negative part is chosen. In the corrector stage by modifying the positive directions system a full-Newton step is removed. We show that, in addition to the predictor step, our method reduces the duality gap in the corrector step and this can be a prominent feature of our method. We prove that the iteration complexity of the new algorithm is 𝒪(n log ɛ−1), which coincides with the best known complexity result for infeasible interior-point methods, where ɛ > 0 is the required precision. Due to the positive direction new system, we improve the theoretical complexity bound for this kind of infeasible interior-point method [1] by a factor of n . Numerical results are also provided to demonstrate the performance of the proposed algorithm.


2018 ◽  
Vol 23 (1) ◽  
pp. 1-16
Author(s):  
Mohammad Pirhaji ◽  
Maryam Zangiabadi ◽  
Hossein Mansouri ◽  
Saman H. Amin

An arc search interior-point algorithm for monotone symmetric cone linear complementarity problem is presented. The algorithm estimates the central path by an ellipse and follows an ellipsoidal approximation of the central path to reach an "-approximate solution of the problem in a wide neighborhood of the central path. The convergence analysis of the algorithm is derived. Furthermore, we prove that the algorithm has the complexity bound O ( p rL) using Nesterov-Todd search direction and O (rL) by the xs and sx search directions. The obtained iteration complexities coincide with the best-known ones obtained by any proposed interior- point algorithm for this class of mathematical problems.


1901 ◽  
Vol IX (2) ◽  
pp. 107-113
Author(s):  
I. N. Aspisovykh

Aiming mainly to follow the central path of the upper branch n. facialis, which innervates the muscles: corrugator supercilii, orbicularis oculi and frontalis, we simultaneously engaged in the exact localization of the corresponding psychomotor centers on the cerebral cortex in dogs.


2014 ◽  
Vol 07 (02) ◽  
pp. 1450028 ◽  
Author(s):  
Behrouz Kheirfam

A corrector–predictor algorithm is proposed for solving semidefinite optimization problems. In each two steps, the algorithm uses the Nesterov–Todd directions. The algorithm produces a sequence of iterates in a neighborhood of the central path based on a new proximity measure. The predictor step uses line search schemes requiring the reduction of the duality gap, while the corrector step is used to restore the iterates to the neighborhood of the central path. Finally, the algorithm has [Formula: see text] iteration complexity.


2013 ◽  
Vol 507 ◽  
pp. 83-99 ◽  
Author(s):  
Yongding Zhu ◽  
Jinhui Xu
Keyword(s):  

2004 ◽  
Vol 103 (3) ◽  
pp. 487-514 ◽  
Author(s):  
João X. da Cruz Neto ◽  
Orizon P. Ferreira ◽  
Renato D. C. Monteiro

Sign in / Sign up

Export Citation Format

Share Document