semidefinite optimization
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 29)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Kin Keung Lai ◽  
Mohd Hassan ◽  
Sanjeev Kumar Singh ◽  
Jitendra Kumar Maurya ◽  
Shashi Kant Mishra

In this paper, we establish Fritz John stationary conditions for nonsmooth, nonlinear, semidefinite, multiobjective programs with vanishing constraints in terms of convexificator and introduce generalized Cottle type and generalized Guignard type constraints qualification to achieve strong S—stationary conditions from Fritz John stationary conditions. Further, we establish strong S—stationary necessary and sufficient conditions, independently from Fritz John conditions. The optimality results for multiobjective semidefinite optimization problem in this paper is related to two recent articles by Treanta in 2021. Treanta in 2021 discussed duality theorems for special class of quasiinvex multiobjective optimization problems for interval-valued components. The study in our article can also be seen and extended for the interval-valued optimization motivated by Treanta (2021). Some examples are provided to validate our established results.


Author(s):  
Bastian Harrach

AbstractSeveral applications in medical imaging and non-destructive material testing lead to inverse elliptic coefficient problems, where an unknown coefficient function in an elliptic PDE is to be determined from partial knowledge of its solutions. This is usually a highly non-linear ill-posed inverse problem, for which unique reconstructability results, stability estimates and global convergence of numerical methods are very hard to achieve. The aim of this note is to point out a new connection between inverse coefficient problems and semidefinite programming that may help addressing these challenges. We show that an inverse elliptic Robin transmission problem with finitely many measurements can be equivalently rewritten as a uniquely solvable convex non-linear semidefinite optimization problem. This allows to explicitly estimate the number of measurements that is required to achieve a desired resolution, to derive an error estimate for noisy data, and to overcome the problem of local minima that usually appears in optimization-based approaches for inverse coefficient problems.


Author(s):  
Amir Ali Ahmadi ◽  
Bachir El Khadir

We study time-varying semidefinite programs (TV-SDPs), which are semidefinite programs whose data (and solutions) are functions of time. Our focus is on the setting where the data vary polynomially with time. We show that under a strict feasibility assumption, restricting the solutions to also be polynomial functions of time does not change the optimal value of the TV-SDP. Moreover, by using a Positivstellensatz (positive locus theorem) on univariate polynomial matrices, we show that the best polynomial solution of a given degree to a TV-SDP can be found by solving a semidefinite program of tractable size. We also provide a sequence of dual problems that can be cast as SDPs and that give upper bounds on the optimal value of a TV-SDP (in maximization form). We prove that under a boundedness assumption, this sequence of upper bounds converges to the optimal value of the TV-SDP. Under the same assumption, we also show that the optimal value of the TV-SDP is attained. We demonstrate the efficacy of our algorithms on a maximum-flow problem with time-varying edge capacities, a wireless coverage problem with time-varying coverage requirements, and on biobjective semidefinite optimization where the goal is to approximate the Pareto curve in one shot.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1369
Author(s):  
Temadher A. Almaadeed ◽  
Akram Taati ◽  
Maziar Salahi ◽  
Abdelouahed Hamdi

In this paper, we study the problem of minimizing a general quadratic function subject to a quadratic inequality constraint with a fixed number of additional linear inequality constraints. Under a regularity condition, we first introduce two convex quadratic relaxations (CQRs), under two different conditions, that are minimizing a linear objective function over two convex quadratic constraints with additional linear inequality constraints. Then, we discuss cases where the CQRs return the optimal solution of the problem, revealing new conditions under which the underlying problem admits strong Lagrangian duality and enjoys exact semidefinite optimization relaxation. Finally, under the given sufficient conditions, we present necessary and sufficient conditions for global optimality of the problem and obtain a form of S-lemma for a system of two quadratic and a fixed number of linear inequalities.


Sign in / Sign up

Export Citation Format

Share Document