Maximal Aerobic Power Test

Author(s):  
Riyad Khanfer ◽  
John Ryan ◽  
Howard Aizenstein ◽  
Seema Mutti ◽  
David Busse ◽  
...  

1988 ◽  
Vol 6 (11) ◽  
pp. 859-865 ◽  
Author(s):  
Robert Fagard ◽  
Jan Staessen ◽  
Antoon Amery

1977 ◽  
Vol 36 (3) ◽  
pp. 215-222 ◽  
Author(s):  
S. S. Verma ◽  
J. Sen Gupta ◽  
M. S. Malhotra

2016 ◽  
Vol 33 (4) ◽  
pp. 367-372 ◽  
Author(s):  
Hadhami Garbouj ◽  
Mohamed Amine Salmi ◽  
Radhouane Haj Sassi ◽  
Mohamed Haj Yahmed ◽  
karim chamari ◽  
...  

2018 ◽  
Vol 13 (1) ◽  
pp. 112-114 ◽  
Author(s):  
Carlo Capelli

Purpose: To analyze best 1-h unaccompanied performances of master athletes in ages ranging from 35 to 105 y to estimate the decay of maximal aerobic power (MAP) across the spectrum of age. Methods: MAP at the various ages was estimated by computing the metabolic power () maintained to cover the distances during best 1-h unaccompanied performances established by master athletes of different classes of age and by assuming that they were able to maintain an equal to 88% of their MAP during 1 h of exhaustive exercise. Results: MAP started monotonically decreasing at 47 y of age. Thereafter, it showed an average rate of decrease of ∼14% for the decades up to 105 y of age, similar to other classes of master athletes. Conclusions: The results confirm, by extending the analysis to centennial subjects, that MAP seems to start declining from the middle of the 5th decade of age, with an average percentage decay that is faster than that traditionally reported, even when one maintains a very active lifestyle. The proposed approach may be applied to other types of human locomotion for which the relationship between speed and is known.


2016 ◽  
Vol 16 (8) ◽  
pp. 1922-1930
Author(s):  
Giorgio Buonanno ◽  
Luca Stabile ◽  
Daniela Lecce ◽  
Angelo Rodio ◽  
Fernanda C. Fuoco

1983 ◽  
Vol 54 (1) ◽  
pp. 113-117 ◽  
Author(s):  
M. N. Sawka ◽  
M. E. Foley ◽  
N. A. Pimental ◽  
M. M. Toner ◽  
K. B. Pandolf

The purpose of this investigation was to evaluate four protocols for their effectiveness in eliciting maximal aerobic power (peak VO2) during arm-crank exercise. Comparisons were made 1) between a continuous (CON) and an intermittent (INT) protocol (both employed a crank rate of 50 rpm) and 2) among the CON protocols employing crank rates of 30, 50, or 70 rpm. For the first group of experiments no significant (P greater than 0.05) differences were found between the CON and INT protocols for peak VO2, maximal pulmonary ventilation (VEmax), maximal heart rate (HRmax), or maximal blood lactate (LAmax) responses. For the second group of experiments, the CON-50 was compared with the CON-30 and CON-70 protocols. In comparison to the CON-50, significantly higher peak VO2 (+10%) and VEmax (+14%) responses were elicited by the CON-70 protocol, whereas significantly lower peak VO2 (-11%), VEmax (-23%), HRmax (-8%), and LAmax (-29%) responses were elicited by the CON-30 protocol. Of the arm-crank protocols examined the combination of a continuous design and a crank rate of 70 rpm provided the most effective protocol to elicit peak VO2 values.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 82
Author(s):  
Andrew W. Subudhi ◽  
J Tod Olin ◽  
Andrew C. Dimmen ◽  
Bengt Kayser ◽  
Robert C. Roach

Sign in / Sign up

Export Citation Format

Share Document