maximal aerobic power
Recently Published Documents


TOTAL DOCUMENTS

226
(FIVE YEARS 18)

H-INDEX

33
(FIVE YEARS 2)

Author(s):  
José-Antonio Salas-Montoro ◽  
Manuel Mateo March ◽  
Cristóbal Sánchez-Muñoz ◽  
Mikel Zabala

The use of near-infrared spectroscopy could be an interesting alternative to other invasive or expensive methods to estimate the second lactate threshold. Our objective was to compare the intensities of the muscle oxygen saturation breakpoint obtained with the Humon Hex and the second lactate threshold in elite cyclists. Ninety cyclists performed a maximal graded exercise test. Blood capillary lactate was obtained at the end of steps and muscle oxygenation was continuously monitored. There were no differences (p>0.05) between muscle oxygen oxygenation breakpoint and second lactate threshold neither in power nor in heart rate, nor when these values were relativized as a percentage of maximal aerobic power or maximum heart rate. There were also no differences when men and women were studied separately. Both methods showed a highly correlation in power (r=0.914), percentage of maximal aerobic power (r=0.752), heart rate (r=0.955), and percentage of maximum heart rate (r=0.903). Bland-Altman resulted in a mean difference of 0.05±0.27 W·kg–1, 0.91±4.93%, 0.63±3.25 bpm, and 0.32±1.69% for power, percentage of maximal aerobic power, heart rate and percentage of maximum heart rate respectively. These findings suggest that Humon may be a non-invasive and low-cost alternative to estimate the second lactate threshold intensity in elite cyclists.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Astrid Most ◽  
Oliver Dörr ◽  
Holger Nef ◽  
Christian Hamm ◽  
Timm Bauer ◽  
...  

Abstract Background The impact of vitamin D on musculoskeletal health is well-established, although its influence on physical performance is unclear. Therefore, we conducted this study to evaluate the impact of 25-hydroxy-vitamin D (25-OH vitamin D) concentrations with maximal aerobic power of professional indoor athletes. Results A total of 112 male professional athletes were included in this cross-sectional study, consisting of 88 handball and 24 ice hockey players. The maximal aerobic power was assessed with a standardized cycling ergometer test. Athletes were assigned to two groups according to their 25-OH vitamin D status: insufficient (< 30 ng/mL) and sufficient (≥ 30 ng/mL). Thirty-four players (30.4%) displayed insufficient (21.9 ± 5.9 ng/mL) and 78 (69.6%) sufficient 25-OH vitamin D concentrations (41.6 ± 8.6 ng/mL). Athletes with sufficient levels achieved a higher maximal aerobic power (3.9 ± 0.9 vs. 3.5 ± 0.8 W/kg, p = 0.03) compared to those with insufficient levels. Conclusions There is a high prevalence of 25-OH vitamin D insufficiency in professional indoor athletes, even in summer. Insufficient 25-OH vitamin D concentrations were associated with lower maximal aerobic power in male professional indoor athletes. Further, the 25-OH vitamin D concentration was identified as the only independent predictor of maximal aerobic power in these athletes, highlighting the impact of 25-OH vitamin D on physical performance. Therefore, 25-OH vitamin D concentrations of ≥ 30 ng/mL should be maintained to ensure optimal physical performance in these athletes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Robert K. Szymczak ◽  
Tomasz Grzywacz ◽  
Ewa Ziemann ◽  
Magdalena Sawicka ◽  
Radosław Laskowski

Background: The influence of high altitude on an organism’s physiology depends on the length and the level of hypoxic exposure it experiences. This study aimed to determine the effect of a prolonged sojourn at very high altitudes (above 3,500m) on subsequent sea-level physical performance, body weight, body composition, and hematological parameters.Materials and Methods: Ten alpinists, nine males and one female, with a mean age of 27±4years, participated in the study. All had been on mountaineering expeditions to 7,000m peaks, where they spent 30±1days above 3,500m with their average sojourn at 4,900±60m. Their aerobic and anaerobic performance, body weight, body composition, and hematological parameters were examined at an altitude of 100m within 7days before the expeditions and 7days after they descended below 3,500m.Results: We found a significant (p&lt;0.01) decrease in maximal anaerobic power (MAPWAnT) from 9.9±1.3 to 9.2±1.3W·kg−1, total anaerobic work from 248.1±23.8 to 228.1±20.1J·kg−1, anaerobic threshold from 39.3±8.0 to 27.8±5.6 mlO2·kg−1·min−1, body fat mass from 14.0±3.1 to 11.5±3.3%, and a significant increase (p&lt;0.05) in maximal tidal volume from 3.2 [3.0–3.2] to 3.5 [3.3–3.9] L after their sojourn at very high attitude. We found no significant changes in maximal aerobic power, maximal oxygen uptake, body weight, fat-free mass, total body water, hemoglobin, and hematocrit.Conclusion: A month-long exposure to very high altitude led to impaired sea-level anaerobic performance and anaerobic threshold, increased maximal tidal volume, and depleted body fat mass, but had no effect on maximal aerobic power, maximal oxygen uptake, or hemoglobin and hematocrit levels.


2021 ◽  
Author(s):  
Paulina Hebisz ◽  
Jacek Borkowski ◽  
Rafal Hebisz

The aim of this study was to determine if the changes in plasma creatine kinase (CK) activity and myoglobin (MB) concentrations as markers of muscle damage differ between competitive road (n = 14) and mountain bike (n = 11) cyclists and if these biochemical markers show a relationship with real-world race performance. CK and MB were measured from blood samples collected 2 hours before race start and 1 hour after race completion and the change in pre- and post-race difference was calculated (ΔCK and ΔMB). An incremental exercise test was used to determine maximal oxygen uptake, maximal aerobic power, and power output at the second ventilatory threshold. Post-race CK and MB increased in the whole group of cyclists. Although the magnitude of change in CK was similar in both road and mountain bike cyclists, only the increase in road cyclists was significant. MB significantly increased only in mountain bike cyclists. Multiple regression analysis revealed a significant association between both road and mountain bike race performance and ΔCK and ΔMB. The other significant predictors for mountain bike race performance were maximal aerobic power (W?kg-1) and power output at the second ventilatory threshold (W?kg-1) and for road race performance both maximal oxygen uptake (l?min-1) and power output at the second ventilatory threshold (W). In conclusion, mountain bike racing was associated with an increase in MB whereas road racing with an increase in CK, with the post-race changes in CK and MB related to race performance as high ΔCK and low ΔMB were obtained by better-performing cyclists.


2020 ◽  
Vol 129 (3) ◽  
pp. 522-532
Author(s):  
Thomas Beltrame ◽  
Mariana Oliveira Gois ◽  
Uwe Hoffmann ◽  
Jessica Koschate ◽  
Richard Lee Hughson ◽  
...  

Optimized methods for cardiorespiratory health evaluation are of great interest for public health. Moderate exercise protocols might be as good as maximum exertion exercise protocols to evaluate cardiorespiratory health. Pseudorandom or constant workload moderate exercise can be used to evaluate cardiorespiratory health.


2020 ◽  
Vol 41 (08) ◽  
pp. 539-544 ◽  
Author(s):  
Ben Thomas Stephenson ◽  
Alex Shill ◽  
John Lenton ◽  
Victoria Goosey-Tolfrey

AbstractThe purpose was to determine the physiological correlates to cycling performance within a competitive paratriathlon. Five wheelchair user and ten ambulant paratriathletes undertook laboratory-based testing to determine their: peak rate of oxygen uptake; blood lactate- and ventilatory-derived physiological thresholds; and, their maximal aerobic power. These variables were subsequently expressed in absolute (l∙min −1 or W), relative (ml∙kg−1∙min −1 or W∙kg −1) and scaled relative (or ml∙kg − 0.82 ∙min −1, ml∙kg − 0.32 ∙min −1 or W∙kg −0.32) terms. All athletes undertook a paratriathlon race with 20 km cycle. Pearson’s correlation test and linear regression analyses were produced between laboratory-derived variables and cycle performance to generate correlation coefficients (r), standard error of estimates and 95% confidence intervals. For wheelchair users, performance was most strongly correlated to relative aerobic lactate threshold (W∙kg −1) (r=−0.99; confidence intervals: −0.99 to −0.99; standard error of estimate=22 s). For ambulant paratriathletes, the greatest correlation was with maximal aerobic power (W∙kg −0.32) (r=−0.91; −0.99 to −0.69; standard error of estimate=88 s). Race-category-specificity exits regarding physiological correlates to cycling performance in a paratriathlon race with further differences between optimal scaling factors between paratriathletes. This suggests aerobic lactate threshold and maximal aerobic power are the pertinent variables to infer cycling performance for wheelchair users and ambulant paratriathletes, respectively.


2020 ◽  
Vol 15 (1) ◽  
pp. 126-132
Author(s):  
Richard Ebreo ◽  
Louis Passfield ◽  
James Hopker

Purpose: To evaluate the reliability of calculating gross efficiency (GE) conventionally and using a back extrapolation (BE) method during high-intensity exercise (HIE). Methods: A total of 12 trained participants completed 2 HIE bouts (P1 = 4 min at 80% maximal aerobic power [MAP]; P2 = 4 min at 100%MAP). GE was calculated conventionally in the last 3 minutes of submaximal (50%MAP) cycling bouts performed before and after HIE (Pre50%MAP and Post50%MAP). To calculate GE using BE (BGE), a linear regression of GE submaximal values post-HIE were back extrapolated to the end of the HIE bout. Results: BGE was significantly correlated with Post50%MAP GE in P1 (r = .63; P = .01) and in P2 (r = .85; P = .002). Reliability data for P1 and P2 BGE demonstrate a mean coefficient of variation of 7.8% and 9.8% with limits of agreement of 4.3% and 4.5% in relative GE units, respectively. P2 BGE was significantly lower than P2 Post50%MAP GE (18.1% [1.6%] vs 20.3% [1.7%]; P = .01). Using a declining GE from the BE method, there was a 44% greater anaerobic contribution compared with assuming a constant GE during 4-minute HIE at 100%MAP. Conclusion: HIE acutely reduced BGE at 100%MAP. A greater anaerobic contribution to exercise as well as excess postexercise oxygen consumption at 100%MAP may contribute to this decline in efficiency. The BE method may be a reliable and valid tool in both estimating GE during HIE and calculating aerobic and anaerobic contributions.


Author(s):  
Carolina Franco Wilke ◽  
Samuel P. Wanner ◽  
Eduardo M. Penna ◽  
André Maia-Lima ◽  
Weslley H.M. Santos ◽  
...  

Purpose: To compare the posttraining recovery timeline of elite Brazilian futsal athletes before (Pre-PS) and after 10 weeks of the preseason (Post-PS) period of high-intensity technical–tactical training. Methods: At the start (n = 13) and at the end of the preseason (n = 7), under-20 male futsal players undertook fitness testing for maximal aerobic power, the countermovement jump (CMJ), and the 10-m sprint with change of direction. Furthermore, at both Pre-PS and Post-PS, the players participated in a training session where performance and psychophysiological measures were recorded before, immediately, 3, 24, and 48 hours postsession. The measures included CMJ, 10-m sprint, creatine kinase, Total Quality Recovery Scale, and Brunel Mood Scale. Effect size (ES) analyses compared fitness and posttraining recovery values for each parameter at Pre-PS versus Post-PS. Results: Only trivial ES (−0.02 to 0.11) was evident in maximal aerobic power, CMJ, and 10-m sprint at Post-PS compared with Pre-PS. For the timeline of recovery, only trivial and small ESs were evident for the 10-m sprint (−0.12 to 0.49), though CMJ recovery was improved at 3 hours (0.87) and 48 hours (1.27) at Post-PS and creatine kinase was lower at 48 hours (−1.33) at Post-PS. Perception of recovery was improved in Post-PS at 3 hours (1.50) and 24 hours postsession (0.92). Furthermore, perception of effort was lower immediately after the session (−0.29), fatigue was lower at 3 hours (−0.63), and vigor responses were improved in all postseason assessments (0.59 to 1.13). Conclusion: Despite minimal changes in fitness, preseason training attenuated players’ perception of effort and fatigue and improved their recovery profile following a high-intensity technical–tactical training session.


Author(s):  
Arnaud Hays ◽  
Caroline Nicol ◽  
Denis Bertin ◽  
Romain Hardouin ◽  
Jeanick Brisswalter

Objectives: To identify relevant physiological, mechanical, and strength indices to improve the evaluation of elite mountain bike riders competing in the current Cross-Country Olympic (XCO) format. Methods: Considering the evolution of the XCO race format over the last decade, the present testing protocol adopted a battery of complementary laboratory cycling tests: a maximal aerobic consumption, a force–velocity test, and a multi-short-sprint test. A group of 33 elite-level XCO riders completed the entire testing protocol and at least 5 international competitions. Results: Very large correlations were found between the XCO performance and maximal aerobic power output (r = .78; P < .05), power at the second ventilation threshold (r = .83; P < .05), maximal pedaling force (r = .77; P < .05), and maximum power in the sixth sprint (r = .87; P < .05) of the multi-short-sprint test. A multiple regression model revealed that the normalized XCO performance was predicted at 89.2% (F3,29 = 89.507; r = .95; P < .001) by maximum power in the sixth sprint (β = 0.602; P < .001), maximal pedaling rate (β = 0.309; P < .001), and relative maximal aerobic power output (β = 0.329; P < .001). Discussion: Confirming our expectations, the current XCO performance was highly correlated with a series of physiological and mechanical parameters reflecting the high level of acyclic and intermittent solicitation of both aerobic and anaerobic metabolic pathways and the required qualities of maximal force and velocity. Conclusion: The combination of physiological, mechanical, and strength characteristics may thus improve the prediction of elite XCO cyclists’ performance. It seems of interest to evaluate the ability to repeatedly produce brief intensive efforts with short active recovery periods.


Sign in / Sign up

Export Citation Format

Share Document