blood lactate concentration
Recently Published Documents


TOTAL DOCUMENTS

645
(FIVE YEARS 191)

H-INDEX

50
(FIVE YEARS 4)

Author(s):  
Carl James ◽  
imothy Jones ◽  
Saro Farra

The physiological and performance attributes of elite squash players were investigated. Thirty-one players (21 males, world ranking [WR] 42-594; 10 females, WR 7-182) completed a battery of fitness tests which included an aerobic squash-specific physical performance test (SPPT), repeated-sprint ability (RSA), change-of-direction speed (COD), acceleration (5-m sprint), body composition and force development (countermovement jump) assessments. The SPPT provided a finishing lap score, V̇O2max, average movement economy and the lap corresponding to a blood lactate concentration of 4 mM.L-1. Players were ranked and assigned to HIGH or LOW performance tiers. Two-way ANOVA (performance level*sex) revealed higher ranked players performed better (p < 0.05) for SPPT final lap (d = 0.35), 4 mM.L-1 lap (d = 0.52) and COD (d = 0.60). SPPT displayed a ‘very-large’ correlation with 4 mM.L-1 lap (r = 0.86), ‘large’ correlations with COD (r = 0.79), RSA (r = 0.79), sum-of-7 skinfolds (r = 0.71) and V̇O2max (r = 0.69), and a ‘trivial’ correlation with average movement economy (r = 0.02). Assessments of cardiovascular fitness (i.e. 4 mM.L-1 lap), RSA, COD and body composition appear highly pertinent for performance profiling of squash players. Regular, submaximal assessment of the 4 mM.L-1 lap during the SPPT may offer a practical athlete monitoring approach for elite squash players.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Sebastian Kaufmann ◽  
Martin Ziegler ◽  
Jana Werner ◽  
Christine Noe ◽  
Richard Latzel ◽  
...  

Abstract Background Artistic gymnastics is a popular Olympic discipline where female athletes compete in four and male athletes in six events with floor exercise having the longest competition duration in Women’s and Men’s artistic gymnastics (WAG, MAG). To date no valid information on the energetics of floor gymnastics is available although this may be important for specific conditioning programming. This study evaluated the metabolic profile of a simulated floor competition in sub-elite gymnasts. Methods 17 (9 male, 8 female) sub-elite gymnasts aged 22.5 ± 2.6y took part in a floor-training-competition where oxygen uptake was measured during and until 15 min post-exercise. Additionally, resting and peak blood lactate concentration after exercise were obtained. The PCr-LA-O2 method was used to calculate the metabolic energy and the relative aerobic (WAER), anaerobic alactic (WPCr) and anaerobic lactic (WBLC) energy contribution. Further, the athletes completed a 30 s Bosco-jumping test, a countermovement jump and a drop jump. Results The competition scores were 9.2 (CI:8.9–9.3) in WAG and 10.6 (CI:10.4–10.9) in MAG. The metabolic profile of the floor routine was mainly aerobic (58.9%, CI: 56.0–61.8%) followed by the anaerobic alactic (24.2%, CI: 21.3–27.1%) and anaerobic lactic shares (16.9%, CI:14.9–18.8%). While sex had a significant (p = .010, d = 1.207) large effect on energy contribution, this was not the case for competition duration (p = .728, d = 0.061). Relative energy contribution of WAG and MAG differed in WAER (64.0 ± 4.7% vs. 54.4 ± 6.8%, p = .004, d = 1.739) but not in WPCr (21.3 ± 6.1% vs. 26.7 ± 8.0%, p = .144, d = 0.801) and WBLC (14.7 ± 5.4% vs. 18.9 ± 4.2%, p = .085, d = 0.954). Further no correlation between any energy share and performance was found but between WPCr and training experience (r = .680, p = .044) and WBLC and competition level (r = .668, p = .049). Conclusion The results show a predominant aerobic energy contribution and a considerable anaerobic contribution with no significant difference between anaerobic shares. Consequently, gymnastic specific aerobic training should not be neglected, while a different aerobic share in WAG and MAG strengthens sex-specific conditioning. All in all, the specific metabolic share must secure adequate energy provision, while relative proportions of the two anaerobic pathways seem to depend on training and competition history.


2021 ◽  
Vol 3 ◽  
Author(s):  
Gustavo A. João ◽  
Gustavo P. L. Almeida ◽  
Lucas D. Tavares ◽  
Carlos Augusto Kalva-Filho ◽  
Nelson Carvas Junior ◽  
...  

Purpose: This study aimed to compare the oxygen consumption, lactate concentrations, and energy expenditure using three different intensities during the resistance training sessions.Methods: A total of 15 men (22.9 ± 2.61 years) experienced in resistance training underwent 3 sessions composed of 8 exercises (chest press, pec deck, squat, lat pull-down, biceps curl, triceps extension, hamstring curl, and crunch machine), which were applied in the same order. The weight lifted differed among the sessions [high session: 6 sets of 5 repetitions at 90% of 1-repetition maximum (1-RM); intermediary session: 3 sets of 10 repetitions at 75% of 1-RM; and low session: 2 sets of 15 repetitions at 60% of 1-RM]. The oxygen consumption (VO2)—during and after (excess post-exercise oxygen consumption (EPOC)) the session, blood lactate concentration, and energy expenditure (i.e., the sum of aerobic and anaerobic contributions, respectively) were assessed.Results: The VO2 significantly decreased in the function of the weight lifting (F(2.28) = 17.02; p &lt; 0.01; ηG2 = 0.32). However, the aerobic contributions significantly increase in the function of the weight lifting (F(2.28) = 79.18; p &lt; 0.01; ηG2 = 0.75). The anaerobic contributions were not different among the sessions (p &gt; 0.05; ηG2 &lt; 0.01). Thus, the total energy expenditure during the session (kcal) significantly increased in the function of the weight lifting (F(2.28) = 86.68; p &lt; 0.01; ηG2 = 0.75). The energy expenditure expressed in time unit (kcal·min−1) was higher in low session than in high session (F(2.28) = 6.20; p &lt; 0.01; ηG2 = 0.15).Conclusion: The weight lifted during resistance training-induced different physiological responses, which induced higher energy expenditure per unit of time during the low session.


2021 ◽  
Vol 12 ◽  
Author(s):  
Danilo A. Massini ◽  
Tiago A. F. Almeida ◽  
Camila M. T. Vasconcelos ◽  
Anderson G. Macedo ◽  
Mário A. C. Espada ◽  
...  

This study assessed the energy cost in swimming (C) during short and middle distances to analyze the sex-specific responses of C during supramaximal velocity and whether body composition account to the expected differences. Twenty-six swimmers (13 men and 13 women: 16.7 ± 1.9 vs. 15.5 ± 2.8 years old and 70.8 ± 10.6 vs. 55.9 ± 7.0 kg of weight) performed maximal front crawl swimming trials in 50, 100, and 200 m. The oxygen uptake (V˙O2) was analyzed along with the tests (and post-exercise) through a portable gas analyser connected to a respiratory snorkel. Blood samples were collected before and after exercise (at the 1st, 3rd, 5th, and 7th min) to determine blood lactate concentration [La–]. The lean mass of the trunk (LMTrunk), upper limb (LMUL), and lower limb (LMLL) was assessed using dual X-ray energy absorptiometry. Anaerobic energy demand was calculated from the phosphagen and glycolytic components, with the first corresponding to the fast component of the V˙O2 bi-exponential recovery phase and the second from the 2.72 ml × kg–1 equivalent for each 1.0 mmol × L–1 [La–] variation above the baseline value. The aerobic demand was obtained from the integral value of the V˙O2 vs. swimming time curve. The C was estimated by the rate between total energy releasing (in Joules) and swimming velocity. The sex effect on C for each swimming trial was verified by the two-way ANOVA (Bonferroni post hoc test) and the relationships between LMTrunk, LMUL, and LMLL to C were tested by Pearson coefficient. The C was higher for men than women in 50 (1.8 ± 0.3 vs. 1.3 ± 0.3 kJ × m–1), 100 (1.4 ± 0.1 vs. 1.0 ± 0.2 kJ × m–1), and 200 m (1.0 ± 0.2 vs. 0.8 ± 0.1 kJ × m–1) with p &lt; 0.01 for all comparisons. In addition, C differed between distances for each sex (p &lt; 0.01). The regional LMTrunk (26.5 ± 3.6 vs. 20.1 ± 2.6 kg), LMUL (6.8 ± 1.0 vs. 4.3 ± 0.8 kg), and LMLL (20.4 ± 2.6 vs. 13.6 ± 2.5 kg) for men vs. women were significantly correlated to C in 50 (R2adj = 0.73), 100 (R2adj = 0.61), and 200 m (R2adj = 0.60, p &lt; 0.01). Therefore, the increase in C with distance is higher for men than women and is determined by the lean mass in trunk and upper and lower limbs independent of the differences in body composition between sexes.


2021 ◽  
Vol 3 ◽  
Author(s):  
Athanasios A. Dalamitros ◽  
Eleni Semaltianou ◽  
Argyris G. Toubekis ◽  
Athanasios Kabasakalis

This study aimed to determine the relationship between three testing procedures during different intensity interval efforts in swimming. Twelve national-level swimmers of both genders executed, on different occasions and after a standardized warm-up, a swimming protocol consisting of either a submaximal (Submax: 8 efforts of 50 m) or a maximal interval (Max: 4 efforts of 15 m), followed by two series of four maximal 25 m efforts. Near-infrared spectroscopy in terms of muscle oxygen saturation (SmO2), heart rate (HR), and blood lactate concentration (BLa) were analyzed at three testing points: after the Submax or the Max protocol (TP1), after the 1st 4 × 25-m (TP2), and after the 2nd maximal 4 × 25-m set (TP3). BLa and HR showed significant changes during all testing points in both protocols (P ≤ 0.01; ES range: 0.45–1.40). SmO2 was different only between TP1 and TP3 in both protocols (P ≤ 0.05–0.01; ES range: 0.36–1.20). A large correlation during the Max protocol between SmO2 and HR (r: 0.931; P ≤ 0.01), and also between SmO2 and BLa was obtained at TP1 (r: 0.722; P ≤ 0.05). A range of moderate-to-large correlations was revealed for SmO2/HR, and BLa/HR for TP2 and TP3 after both protocols (r range: 0.595–0.728; P ≤ 0.05) were executed. SmO2 is a novel parameter that can be used when aiming for a comprehensive evaluation of competitive swimmers' acute responses to sprint interval swimming, in conjunction with HR and BLa.


Author(s):  
Gaelle Deley ◽  
Carole Cometti ◽  
Christos Paizis ◽  
Nicolas Babault

For years, athletes and coaches have been looking for new strategies to optimize post-exercise recovery; it has recently been suggested that combining several methods might be a great option. This study therefore aimed to investigate the efficacy of contrast water therapy (CWT) used alone or associated with pedaling to recover from exhaustive exercise. After high-intensity intermittent exercise, 33 participants underwent 30 min of either (i) passive rest (PASSIVE), (ii) CWT with pedaling while in water (COMB) or (iii) classic CWT (CWT). Blood lactate concentration, countermovement jump height and perceived exhaustion were recorded before exercise, immediately after, after recovery interventions and after an additional 30 min of passive rest. Blood lactate concentration returned to initial values after 30 min of COMB (5.9 mmol/L), whereas in the other conditions even 60 min was not enough (10.2 and 9.6 mmol/L for PASSIVE and CWT, respectively, p < 0.05). Jump height was close to initial values after 30 min of CWT (37.3 cm), whereas values were still depressed after 60 min in the PASSIVE (36.0 cm) and COMB (35.7 cm) conditions (p < 0.05). Perceived exertion was still high for all conditions after 60 min. The present results are in favor of the utilization of CWT after exhaustive exercise, but the modality has to be chosen depending on what comes next (subsequent exercise scheduled in the following hours or further away).


Spinal Cord ◽  
2021 ◽  
Author(s):  
Michael J. Hutchinson ◽  
Victoria L. Goosey-Tolfrey

Abstract Study design Cohort study. Objectives To investigate and critique different methods for aerobic exercise intensity prescription in adults with spinal cord injury (SCI). Setting University laboratory in Loughborough, UK. Methods Trained athletes were split into those with paraplegia (PARA; n = 47), tetraplegia (TETRA; n = 20) or alternate health condition (NON-SCI; n = 67). Participants completed a submaximal step test with 3 min stages, followed by graded exercise test to exhaustion. Handcycling, arm crank ergometry or wheelchair propulsion were performed depending on the sport of the participant. Oxygen uptake (V̇O2), heart rate (HR), blood lactate concentration ([BLa]) and ratings of perceived exertion (RPE) on Borg’s RPE scale were measured throughout. Lactate thresholds were identified according to log-V̇O2 plotted against log-[BLa] (LT1) and 1.5 mmol L−1 greater than LT1 (LT2). These were used to demarcate moderate (<LT1), heavy (>LT1, < LT2) and severe (>LT2) exercise intensity domains. Results Associations between percentage of peak V̇O2 (%V̇O2peak) and HR (%HRpeak) with RPE differed between PARA and TETRA. At LT1 and LT2, %V̇O2peak and %HRpeak were significantly greater in TETRA compared to PARA and NON-SCI (P < 0.05). The variation in %V̇O2peak and %HRpeak at lactate thresholds resulted in large variability in the domain distribution at fixed %V̇O2peak and %HRpeak. Conclusions Fixed %V̇O2peak and %HRpeak should not be used for aerobic exercise intensity prescription in adults with SCI as the method does not lead to uniform exercise intensity domain distribution.


Author(s):  
Giovanni Carpenè ◽  
Diletta Onorato ◽  
Riccardo Nocini ◽  
Gianmarco Fortunato ◽  
John G. Rizk ◽  
...  

Abstract Coronavirus disease 2019 (COVID-19) is an infectious respiratory condition sustained by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which manifests prevalently as mild to moderate respiratory tract infection. Nevertheless, in a number of cases the clinical course may deteriorate, with onset of end organ injury, systemic dysfunction, thrombosis and ischemia. Given the clinical picture, baseline assessment and serial monitoring of blood lactate concentration may be conceivably useful in COVID-19. We hence performed a systematic literature review to explore the possible association between increased blood lactate levels, disease severity and mortality in COVID-19 patients, including comparison of lactate values between COVID-19 and non-COVID-19 patients. We carried out an electronic search in Medline and Scopus, using the keywords “COVID-19” OR “SARS-CoV-2” AND “lactate” OR “lactic acid” OR “hyperlactatemia”, between 2019 and present time (i.e. October 10, 2021), which allowed to identify 19 studies, totalling 6,459 patients. Overall, we found that COVID-19 patients with worse outcome tend to display higher lactate values than those with better outcome, although most COVID-19 patients in the studies included in our analysis did not have sustained baseline hyperlactatemia. Substantially elevated lactate values were neither consistently present in all COVID-19 patients who developed unfavourable clinical outcomes. These findings suggest that blood lactate monitoring upon admission and throughout hospitalization may be useful for early identification of higher risk of unfavourable COVID-19 illness progression, though therapeutic decisions based on using conventional hyperlactatemia cut-off values (i.e., 2.0 mmol/L) upon first evaluation may be inappropriate in patients with SARS-CoV-2 infection.


2021 ◽  
Vol 6 (4) ◽  
pp. 95
Author(s):  
Ryotaro Kano ◽  
Kohei Sato

It has been reported that the variability of resting blood lactate concentration (BLa) is related to metabolic capacity. However, it is unclear whether the resting BLa of athletes can be utilized as a metabolic biomarker. This longitudinal case study tested the hypothesis that resting BLa levels in the morning fluctuate with a 1-year training cycle. The subject was an adult male sprinter, and BLa and blood glucose at the time of waking were measured every day for 1 year. The training cycles were divided into five phases: 1. Basic training: high-intensity and high-volume load; 2. Condition and speed training: high-intensity and low-volume load; 3. Competition training I: track race and high-intensity load; 4. Conditioning for injury; 5. Competition training II. The mean BLa levels in the basic training (1.10 ± 0.32 mmol/L and competition training I (1.06 ± 0.28 mmol/L) phases were significantly lower than in the condition and speed training (1.26 ± 0.40 mmol/L) and conditioning injury (1.37 ± 0.34 mmol/L) phases. The clarified training cycle dependence of resting BLa is suggested to be related to the ability to utilize lactate as an energy substrate with fluctuations in oxidative metabolic capacity. This case report supports the tentative hypothesis that resting BLa may be a biomarker index linked to the metabolic capacity according to the training cycle.


2021 ◽  
Vol 12 ◽  
Author(s):  
Leonardo Coelho Rabello de Lima ◽  
Carlos Roberto Bueno Junior ◽  
Claudio de Oliveira Assumpção ◽  
Natália de Menezes Bassan ◽  
Renan Vieira Barreto ◽  
...  

This study aimed to investigate if ACTN3 gene polymorphism impacts the susceptibility to exercise-induced muscle damage (EIMD) and changes in running economy (RE) following downhill running. Thirty-five healthy men were allocated to the two groups based on their ACTN3 gene variants: RR and X allele carriers. Neuromuscular function [knee extensor isometric peak torque (IPT), rate of torque development (RTD), and countermovement, and squat jump height], indirect markers of EIMD [muscle soreness, mid-thigh circumference, knee joint range of motion, and serum creatine kinase (CK) activity], and RE (oxygen uptake, minute ventilation, blood lactate concentration, and perceived exertion) for 5-min of running at a speed equivalent to 80% of individual maximal oxygen uptake speed were assessed before, immediately after, and 1–4 days after a 30-min downhill run (−15%). Neuromuscular function was compromised (P &lt; 0.05) following downhill running with no differences between the groups, except for IPT, which was more affected in the RR individuals compared with the X allele carriers immediately (−24.9 ± 6.9% vs. −16.3 ± 6.5%, respectively) and 4 days (−16.6 ± 14.9% vs. −4.2 ± 9.5%, respectively) post-downhill running. EIMD manifested similarly for both the groups except for serum CK activity, which was greater for RR (398 ± 120 and 452 ± 126 U L–1 at 2 and 4 days following downhill running, respectively) compared with the X allele carriers (273 ± 121 and 352 ± 114 U L–1 at the same time points). RE was compromised following downhill running (16.7 ± 8.3% and 11 ± 7.5% increases in oxygen uptake immediately following downhill running for the RR and X allele carriers, respectively) with no difference between the groups. We conclude that although RR individuals appear to be more susceptible to EIMD following downhill running, this does not extend to the changes in RE.


Sign in / Sign up

Export Citation Format

Share Document