2014 ◽  
Vol 13 (04) ◽  
pp. 1430001 ◽  
Author(s):  
Jaume Masoliver

We review the level-crossing problem which includes the first-passage and escape problems as well as the theory of extreme values (the maximum, the minimum, the maximum absolute value and the range or span). We set the definitions and general results and apply them to one-dimensional diffusion processes with explicit results for the Brownian motion and the Ornstein–Uhlenbeck (OU) process.


1997 ◽  
Vol 34 (3) ◽  
pp. 623-631 ◽  
Author(s):  
R. Gutiérrez ◽  
L. M. Ricciardi ◽  
P. Román ◽  
F. Torres

In this paper we study a Volterra integral equation of the second kind, including two arbitrary continuous functions, in order to determine first-passage-time probability density functions through time-dependent boundaries for time-non-homogeneous one-dimensional diffusion processes with natural boundaries. These results generalize those which were obtained for time-homogeneous diffusion processes by Giorno et al. [3], and for some particular classes of time-non-homogeneous diffusion processes by Gutiérrez et al. [4], [5].


1989 ◽  
Vol 54 (3-4) ◽  
pp. 1065-1080 ◽  
Author(s):  
Francois Delyon ◽  
Jean-Francois Luciani

2011 ◽  
Vol 2011 ◽  
pp. 1-13
Author(s):  
Mario Lefebvre

Two-dimensional diffusion processes are considered between concentric circles and in angular sectors. The aim of the paper is to compute the probability that the process will hit a given part of the boundary of the stopping region first. The appropriate partial differential equations are solved explicitly by using the method of similarity solutions and the method of separation of variables. Some solutions are expressed as generalized Fourier series.


Sign in / Sign up

Export Citation Format

Share Document