generalized fourier series
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 14)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Manuel Cobos Budia ◽  
Pedro Otiñar Morillas ◽  
Pedro Magaña Redondo ◽  
Asunción Baquerizo Azofra

Abstract We propose a methodology to characterize a multivariate non-stationary vector random process that can be used for simulating random realizations that keep the probabilistic behavior of the original time series. The marginal probability distribution of each component process is assumed to be a piecewise function defined by several weighted parametric probability models. The weights are obtained analytically by ensuring that the probability density function is well defined and that it is continuous at the common endpoints. The probability model is assumed to vary periodically in time over a predefined time period by defining the model parameters and the common endpoints as truncated generalized Fourier series. The coefficients of the expansions are obtained with the maximum likelihood method. Three different types of sets of orthogonal functions are tested. The method is applied to three time series with different particularities. Firstly, it is shown its good behavior to capture the highly variable freshwater discharges at a dam located in a semiarid zone in Andalucía (Spain) which is influenced not only by the climate variability but also by management decisions. Secondly, for the Wolf sunspot number time series, the Schwabe cycle and time variations close to the 7.5 and 17 years are analyzed along a 22-year cycle. Finally, the method is applied to a bivariate (velocity and direction) wind time series observed at a location of the Atlantic Ocean. For this case, the analysis, that was combined with a vectorial autoregresive model, focus on the assessment of the goodness of the methodology to replicate the statistical features of the original series. In particular, it is found that it reproduces the marginal and joint distributions, the wind rose, and the duration of sojourns above given thresholds.


Author(s):  
Abhijit Ghosh ◽  
Anirvan DasGupta

In this work, we propose a general perturbative approach for modal analysis of irregular-shaped plates of uniform thickness with uniform boundary conditions. Given a plate of irregular boundary, first, a uniform circular plate of identical thickness and area, centred at the centroid, is determined. The irregular boundary is then treated as a perturbation with a suitable smallness parameter, and is expressed as a generalized Fourier series. The frequency parameter, shape function and boundary conditions are then perturbed in terms of the smallness parameter. The homogeneous zeroth-order equation corresponds to the circular plate, which is exactly solvable. We show that the inhomogeneous equations in the higher orders can also be solved exactly using a particular solution structure. We can then construct the exact perturbative solution up to any order. The proposed method is demonstrated through the modal analysis of simply supported super-circular plates. The results are validated using the numerical results obtained from ANSYS ® , which are an excellent match. Interestingly, the supposedly degenerate modes with an even number of nodal diameters of super-circular plates are found to split naturally.


Author(s):  
С. И. Жаворонок ◽  

A brief review of the modern state-of-the art and tendencies of further development of various methods of solution of wave dispersion problems in heterogeneous functionally graded elastic waveguides is presented. Main types of functionally graded materials and structures, including gradient thon-walled structures, and their main engineering applications is discussed. The main difficulties of modelling of the stress-strain state of functionally graded shells and plates are pointed, as well as the possible ways to overcome such difficulties. The main theoretical bases of definition of effective constitutive constants of functionally graded materials and their possible estimates used in the practice are considered. Main dependencies of the effective constitutive constants of a functionally graded material on coordinates used for the mathematical modelling of the dynamics are also shown. The statement of the dynamics problem for a functionally graded waveguide and the appropriate statement of the normal wave dispersion problem are pointed. The presented Part I of the review consider some analytical methods of solution of dispersion problems, mainly the matrix ones based on the formulation of the steady dynamics problem in the image space as a first-order ordinary differential equations system. The state vectors corresponding to the useful Cauchy and Stroh formalisms are introduced, and the appropriate governing equations and the boundary conditions on waveguide’s faces are presented. Classical methods for solving the steady dynamics problem for a laminated waveguide are briefly described, which could be a basis for the further approximation of a functionally graded material by a system of layers with constant properties, i.e. the transfer matrix method, its main modifications developed to ensure the stability of calculations, and the global matrix method. Then, the intensively developed last 15 years reverberation matrix method, stiffness matrix method, and the Peano series method are discussed. Some key solutions of the wave dispersion problems for heterogeneous layers are presented; such solutions improve the efficiency of approximation of a functionally graded structure by a laminated one. The implicit solution of the general problem of steady dynamics for a waveguide with arbitrary gradation law is shown. The key features of the discussed matrix methods are pointed briefly as well as their main drawbacks. In the Part II, the main attention will be paid to methods of semi-analytical solution of dispersion problems based on the approximation of a waveguide by an equivalent system with a finite number of degrees of freedom: power series, generalized Fourier series, semi-analytical finite elements. spectral elements, as well as methods based on various theories of plates and shells.


Author(s):  
Vyacheslav V. Provotorov ◽  
Alexei P. Zhabko

In the work, the stability conditions for a solution of an evolutionary hyperbolic system with distributed parameters on a graph describing the oscillating process of continuous medium in a spatial network are indicated. The hyperbolic system is considered in the weak formulation: a weak solution of the system is a summable function that satisfies the integral identity which determines the variational formulation for the initial-boundary value problem. The basic idea, that has determined the content of this work, is to present a weak solution in the form of a generalized Fourier series and continue with an analysis of the convergence of this series and the series obtained by its single termwise differentiation. The used approach is based on a priori estimates of a weak solution and the construction (by the Fayedo–Galerkin method with a special basis, the system of eigenfunctions of the elliptic operator of a hyperbolic equation) of a weakly compact family of approximate solutions in the selected state space. The obtained results underlie the analysis of optimal control problems of oscillations of netset-like industrial constructions which have interesting analogies with multi-phase problems of multidimensional hydrodynamics.


2020 ◽  
Vol 28 (4) ◽  
pp. 82-94
Author(s):  
V.F. Kanushin ◽  
◽  
I.G. Ganagina ◽  
D.N. Goldobin ◽  
◽  
...  

The article presents two methods of modeling discrete heights of a quasigeoid on a local area of the earth’s surface using a gen-eralized Fourier series. The first method is based on modeling the characteristics of the earth’s gravitational field on a plane and involves the use of a two-dimensional Fourier transform by an orthonormal system of trigonometric functions. The second method consists in the expansion of the quasigeoid heights in a Fourier series by an orthonormal system of spherical functions on a local area of the earth’s surface. The errors of approxima-tion of the obtained discrete values of the quasigeoid heights on the local territory are analyzed. It is shown that with the modern computing technology, the most accurate and technologically simple way to model the quasigeoid heights on local areas is to expand them into a Fourier series by an orthonormal system of spherical functions.


Sign in / Sign up

Export Citation Format

Share Document