lifetime studies
Recently Published Documents


TOTAL DOCUMENTS

289
(FIVE YEARS 11)

H-INDEX

37
(FIVE YEARS 2)

2021 ◽  
Vol 103 (3) ◽  
pp. 115-121
Author(s):  
T.M. Serikov ◽  
◽  
A.E. Sadykova ◽  
P.A. Zhanbirbayeva ◽  
A.S. Baltabekov ◽  
...  

The paper presents the results of a study of films formed by titanium dioxide nanorods and deposited on their surface of reduced graphene oxide by electrochemical deposition. Nanostructured films based on TiO2 nanorods were prepared in a 100 ml stainless steel autoclave with a fluoroplastic insert from a solution containing 35 ml of deionized water (H2O), 35 ml of hydrochloric acid (HCl) (36.5 %, Sigma–Aldrich) and 0.25 ml of titanium butylate C16H36O4Ti (97 %, Sigma–Aldrich). The addition of reduced graphene oxide to the structure of titanium dioxide nanorods increases the specific surface area of nanostructures from 29.3 m2 /g to 63.1 m2 /g. Calculations based on the film impedance spectra have shown that the optimal deposition time of reduced graphene oxide on the surface of TiO2 nanorods is 3 minutes, since it has a low recombination coefficient and a long electron lifetime. Studies of the photocatalytic activity of nanomaterials and registration of the released hydrogen and oxygen gases have shown that when the films are irradiated for 5 hours, the amount of hydrogen released varies from 50 to 225 mmol/cm2 .


Laser Physics ◽  
2021 ◽  
Vol 31 (6) ◽  
pp. 065601
Author(s):  
E S Gorodnichev ◽  
A A Kuleshova ◽  
O I Volkova ◽  
A M Saletsky

2021 ◽  
Vol 61 (4) ◽  
pp. 1056-1063
Author(s):  
Kazuki Sugita ◽  
Masataka Mizuno ◽  
Hideki Araki ◽  
Yasuharu Shirai ◽  
Tomohiko Omura ◽  
...  

2021 ◽  
Vol 103 (2) ◽  
Author(s):  
H. C. Manjunatha ◽  
L. Seenappa ◽  
P. S. Damodara Gupta ◽  
N. Manjunatha ◽  
K. N. Sridhar ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 449 ◽  
Author(s):  
Abdullah M. Almarashi ◽  
Majdah M. Badr ◽  
Mohammed Elgarhy ◽  
Farrukh Jamal ◽  
Christophe Chesneau

The inverse Rayleigh distribution finds applications in many lifetime studies, but has not enough overall flexibility to model lifetime phenomena where moderately right-skewed or near symmetrical data are observed. This paper proposes a solution by introducing a new two-parameter extension of this distribution through the use of the half-logistic transformation. The first contribution is theoretical: we provide a comprehensive account of its mathematical properties, specifically stochastic ordering results, a general linear representation for the exponentiated probability density function, raw/inverted moments, incomplete moments, skewness, kurtosis, and entropy measures. Evidences show that the related model can accommodate the treatment of lifetime data with different right-skewed features, so far beyond the possibility of the former inverse Rayleigh model. We illustrate this aspect by exploring the statistical inference of the new model. Five classical different methods for the estimation of the model parameters are employed, with a simulation study comparing the numerical behavior of the different estimates. The estimation of entropy measures is also discussed numerically. Finally, two practical data sets are used as application to attest of the usefulness of the new model, with favorable goodness-of-fit results in comparison to three recent extended inverse Rayleigh models.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Hassan M. Okasha ◽  
Chuanmei Wang ◽  
Jianhua Wang

Type-II censored data is an important scheme of data in lifetime studies. The purpose of this paper is to obtain E-Bayesian predictive functions which are based on observed order statistics with two samples from two parameter Burr XII model. Predictive functions are developed to derive both point prediction and interval prediction based on type-II censored data, where the median Bayesian estimation is a novel formulation to get Bayesian sample prediction, as the integral for calculating the Bayesian prediction directly does not exist. All kinds of predictions are obtained with symmetric and asymmetric loss functions. Two sample techniques are considered, and gamma conjugate prior density is assumed. Illustrative examples are provided for all the scenarios considered in this article. Both illustrative examples with real data and the Monte Carlo simulation are carried out to show the new method is acceptable. The results show that Bayesian and E-Bayesian predictions with the two kinds of loss functions have little difference for the point prediction, and E-Bayesian confidence interval (CI) with the two kinds of loss functions are almost similar and they are more accurate for the interval prediction.


2019 ◽  
Vol 116 (48) ◽  
pp. 24019-24030 ◽  
Author(s):  
Jason T. Smith ◽  
Ruoyang Yao ◽  
Nattawut Sinsuebphon ◽  
Alena Rudkouskaya ◽  
Nathan Un ◽  
...  

Fluorescence lifetime imaging (FLI) provides unique quantitative information in biomedical and molecular biology studies but relies on complex data-fitting techniques to derive the quantities of interest. Herein, we propose a fit-free approach in FLI image formation that is based on deep learning (DL) to quantify fluorescence decays simultaneously over a whole image and at fast speeds. We report on a deep neural network (DNN) architecture, named fluorescence lifetime imaging network (FLI-Net) that is designed and trained for different classes of experiments, including visible FLI and near-infrared (NIR) FLI microscopy (FLIM) and NIR gated macroscopy FLI (MFLI). FLI-Net outputs quantitatively the spatially resolved lifetime-based parameters that are typically employed in the field. We validate the utility of the FLI-Net framework by performing quantitative microscopic and preclinical lifetime-based studies across the visible and NIR spectra, as well as across the 2 main data acquisition technologies. These results demonstrate that FLI-Net is well suited to accurately quantify complex fluorescence lifetimes in cells and, in real time, in intact animals without any parameter settings. Hence, FLI-Net paves the way to reproducible and quantitative lifetime studies at unprecedented speeds, for improved dissemination and impact of FLI in many important biomedical applications ranging from fundamental discoveries in molecular and cellular biology to clinical translation.


2019 ◽  
Author(s):  
Jason T. Smith ◽  
Ruoyang Yao ◽  
Nattawut Sinsuebphon ◽  
Alena Rudkouskaya ◽  
Joseph Mazurkiewicz ◽  
...  

AbstractFluorescence lifetime imaging (FLI) provides unique quantitative information in biomedical and molecular biology studies, but relies on complex data fitting techniques to derive the quantities of interest. Herein, we propose a novel fit-free approach in FLI image formation that is based on Deep Learning (DL) to quantify complex fluorescence decays simultaneously over a whole image and at ultra-fast speeds. Our deep neural network (DNN), named FLI-Net, is designed and model-based trained to provide all lifetime-based parameters that are typically employed in the field. We demonstrate the accuracy and generalizability of FLI-Net by performing quantitative microscopic and preclinical experimental lifetime-based studies across the visible and NIR spectra, as well as across the two main data acquisition technologies. Our results demonstrate that FLI-Net is well suited to quantify complex fluorescence lifetimes, accurately, in real time in cells and intact animals without any parameter settings. Hence, it paves the way to reproducible and quantitative lifetime studies at unprecedented speeds, for improved dissemination and impact of FLI in many important biomedical applications, especially in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document