Empirical Analysis of Machine Learning Algorithms in Fault Diagnosis of Coolant Tower in Nuclear Power Plants

Author(s):  
S. Sharanya ◽  
Revathi Venkataraman
2017 ◽  
Author(s):  
Donald D. Lucas ◽  
Matthew D. Simpson ◽  
Philip Cameron-Smith ◽  
Ronald L. Baskett

Abstract. Probability distribution functions (PDFs) of model inputs that affect the transport and dispersion of a trace gas released from a coastal California nuclear power plant are quantified using ensemble simulations, machine learning algorithms, and Bayesian inversion. The PDFs are constrained by observations of tracer concentrations and account for uncertainty in meteorology, transport, diffusion, and emissions. Meteorological uncertainty is calculated using an ensemble of simulations of the Weather Research and Forecasting (WRF) model that samples five categories of model inputs (initialization time, boundary layer physics, land surface model, nudging options, and reanalysis data). The WRF output is used to drive tens of thousands of FLEXPART dispersion simulations that sample a uniform distribution of six emissions inputs. Machine learning algorithms are trained on the ensemble data, and used to quantify the sources of ensemble variability and to infer, via inverse modeling, the values of the 11 model inputs most consistent with tracer measurements. We find a substantial ensemble spread in tracer concentrations (factors of 10 to 103), most of which is due to changing emissions inputs (about 80 %), though the cumulative effects of meteorological variations are not negligible. The performance of the inverse method is verified using synthetic observations generated from arbitrarily selected simulations. When applied to measurements from a controlled tracer release experiment, the most likely inversion results are within about 200 meters of the known release location, 5 and 50 minutes of the release start and duration times, respectively, and 22 % of the release amount. The inversion also estimates probabilities of different combinations of WRF inputs of matching the tracer observations.


1994 ◽  
Vol 44 (3) ◽  
pp. 225-235 ◽  
Author(s):  
Qin Zhang ◽  
Xuegao An ◽  
Jin Gu ◽  
Binquan Zhao ◽  
Dazhi Xu ◽  
...  

Author(s):  
Elmahdi Khoudry ◽  
Abdelaziz Belfqih ◽  
Tayeb Ouaderhman ◽  
Jamal Boukherouaa ◽  
Faissal Elmariami

This paper puts forward a real-time smart fault diagnosis system (SFDS) intended for high-speed protection of power system transmission lines. This system is based on advanced signal processing techniques, traveling wave theory results, and machine learning algorithms. The simulation results show that the SFDS can provide an accurate internal/external fault discrimination, fault inception time estimation, fault type identification, and fault location. This paper presents also the hardware requirements and software implementation of the SFDS.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Xinghui Zhang ◽  
Jianshe Kang ◽  
Lei Xiao ◽  
Jianmin Zhao

Gear and bearing play an important role as key components of rotating machinery power transmission systems in nuclear power plants. Their state conditions are very important for safety and normal operation of entire nuclear power plant. Vibration based condition monitoring is more complicated for the gear and bearing of planetary gearbox than those of fixed-axis gearbox. Many theoretical and engineering challenges in planetary gearbox fault diagnosis have not yet been resolved which are of great importance for nuclear power plants. A detailed vibration condition monitoring review of planetary gearbox used in nuclear power plants is conducted in this paper. A new fault diagnosis method of planetary gearbox gears is proposed. Bearing fault data, bearing simulation data, and gear fault data are used to test the new method. Signals preprocessed using dilation-erosion gradient filter and fast Fourier transform for fault information extraction. The length of structuring element (SE) of dilation-erosion gradient filter is optimized by alpha stable distribution. Method experimental verification confirmed that parameter alpha is superior compared to kurtosis since it can reflect the form of entire signal and it cannot be influenced by noise similar to impulse.


Sign in / Sign up

Export Citation Format

Share Document