scholarly journals Verifiable Inner Product Encryption Scheme

Author(s):  
Najmeh Soroush ◽  
Vincenzo Iovino ◽  
Alfredo Rial ◽  
Peter B. Roenne ◽  
Peter Y. A. Ryan
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shuang Yao ◽  
Dawei Zhang

Broadcast encryption scheme enables a sender distribute the confidential content to a certain set of intended recipients. It has been applied in cloud computing, TV broadcasts, and many other scenarios. Inner product broadcast encryption takes merits of both broadcast encryption and inner product encryption. However, it is crucial to reduce the computation cost and to take the recipient’s privacy into consideration in the inner product broadcast encryption scheme. In order to address these problems, we focus on constructing a secure and practical inner product broadcast encryption scheme in this paper. First, we build an anonymous certificate-based inner product broadcast encryption scheme. Especially, we give the concrete construction and security analysis. Second, compared with the existing inner product broadcast encryption schemes, the proposed scheme has an advantage of anonymity. Security proofs show that the proposed scheme achieves confidentiality and anonymity against adaptive chosen-ciphertext attacks. Finally, we implement the proposed anonymous inner product broadcast encryption scheme and evaluate its performance. Test results show that the proposed scheme supports faster decryption operations and has higher efficiency.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yu Zhang ◽  
Yin Li ◽  
Yifan Wang

The searchable encryption scheme can perform keywords search operation directly over encrypted data without decryption, which is crucial to cloud storage, and has attracted a lot of attention in these years. However, it is still an open problem to develop an efficient public key encryption scheme supporting conjunctive and a disjunctive keyword search simultaneously. To achieve this goal, we introduce a keyword conversion method that can transform the query and index keywords into a vector space model. Through applying a vector space model to a predicate encryption scheme supporting inner product, we propose a novel public key encryption scheme with conjunctive and disjunctive keyword search. The experiment result demonstrates that our scheme is more efficient in both time and space as well as more suitable for the mobile cloud compared with the state-of-art schemes.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Tao Wang ◽  
Bo Yang ◽  
Guoyong Qiu ◽  
Lina Zhang ◽  
Yong Yu ◽  
...  

Massive data are generated and collected by devices in the industrial Internet of Things. Data sources would encrypt the data and send them to the data center through the gateway. For some supervision purpose, the gateway needs to observe the encrypted data stream and label the suspicious data. Instead of decrypting ciphertext at the gateway, which is not efficient, this paper presents a Φ-searchable functional encryption scheme that supports inner product evaluations on encrypted data. Based on this scheme, an approach enabling various queries on the encrypted industrial data stream is proposed. The adaptive security of our proposed underlying functional encryption scheme can be proven under general subgroup decision assumptions, and our scheme has the smaller public key, the smaller secret key, and the smaller ciphertext size compared to the related schemes. In addition, the experimental results show that our proposed scheme is efficient. Especially for the gateway, querying on the encrypted data only needs less than 20ms, which is practical for industrial data stream auditing scenario.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wenbo Liu ◽  
Qiong Huang ◽  
Xinjian Chen ◽  
Hongbo Li

AbstractFunctional encryption (FE) is a novel paradigm for encryption scheme which allows tremendous flexibility in accessing encrypted information. In FE, a user can learn specific function of encrypted messages by restricted functional key and reveal nothing else about the messages. Inner product encryption (IPE) is a special type of functional encryption where the decryption algorithm, given a ciphertext related to a vector x and a secret key related to a vector y, computes the inner product x·y. In this paper, we construct an efficient private-key functional encryption (FE) for inner product with simulation-based security, which is much stronger than indistinguishability-based security, under the External Decisional Linear assumption in the standard model. Compared with the existing schemes, our construction is faster in encryption and decryption, and the master secret key, secret keys and ciphertexts are shorter.


2016 ◽  
Vol 67 (1) ◽  
pp. 69-83 ◽  
Author(s):  
Dung Hoang Duong ◽  
Pradeep Kumar Mishra ◽  
Masaya Yasuda

Abstract Homomorphic encryption enables various calculations while preserving the data confidentiality. In this paper, we apply the somewhat homomorphic encryption scheme proposed by Brakerski and Vaikuntanathan (CRYPTO 2011) to secure matrix multiplication between two matrices. To reduce both the ciphertext size and the computation cost, we propose a new method to pack a matrix into a single ciphertexts so that it also enables efficient matrix multiplication over the packed ciphertexts. Our packing method generalizes Yasuda et al.’s methods (Security Comm. Networks 2015 and ACISP 2015), which are for secure inner product. We also implement our methods and give a comparison with previous packing methods.


Author(s):  
Masoomeh Sepehri ◽  
Alberto Trombetta ◽  
Maryam Sepehri

With the ever-growing production of data coming from multiple, scattered, highly dynamical sources (like those found in IoT scenarios), many providers are motivated to upload their data to the cloud servers and share them with other persons with different purposes. However, storing data on cloud imposes serious concerns in terms of data confidentiality and access control. These concerns get more attention when data is required to be shared among multiple users with different access policies. In order to update access policy without making re-encryption, we propose an efficient inner-product proxy re-encryption scheme that provides a proxy server with a transformation key with which a delegator’s ciphertext associated with an attribute vector can be transformed to a new ciphertext associated with delegatee’s attribute vector set. Our proposed policy updating scheme enables the delegatee to decrypt the shared data with its own key without requesting a new decryption key. We experimentally analyze the efficiency of our scheme and show that our scheme is adaptive attribute-secure against chosen-plaintext under standard Decisional Linear (D-Linear) assumption.  


Sign in / Sign up

Export Citation Format

Share Document