scholarly journals Anonymous Certificate-Based Inner Product Broadcast Encryption

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shuang Yao ◽  
Dawei Zhang

Broadcast encryption scheme enables a sender distribute the confidential content to a certain set of intended recipients. It has been applied in cloud computing, TV broadcasts, and many other scenarios. Inner product broadcast encryption takes merits of both broadcast encryption and inner product encryption. However, it is crucial to reduce the computation cost and to take the recipient’s privacy into consideration in the inner product broadcast encryption scheme. In order to address these problems, we focus on constructing a secure and practical inner product broadcast encryption scheme in this paper. First, we build an anonymous certificate-based inner product broadcast encryption scheme. Especially, we give the concrete construction and security analysis. Second, compared with the existing inner product broadcast encryption schemes, the proposed scheme has an advantage of anonymity. Security proofs show that the proposed scheme achieves confidentiality and anonymity against adaptive chosen-ciphertext attacks. Finally, we implement the proposed anonymous inner product broadcast encryption scheme and evaluate its performance. Test results show that the proposed scheme supports faster decryption operations and has higher efficiency.

2018 ◽  
Vol 29 (07) ◽  
pp. 1850058 ◽  
Author(s):  
Nabil Ben Slimane ◽  
Nahed Aouf ◽  
Kais Bouallegue ◽  
Mohsen Machhout

In this paper, an efficient scheme for image encryption based on the nested chaotic map and deoxyribonucleic acid (DNA) is introduced. In order to generate the initial condition values of the nested chaotic system, the Secure Hash Algorithm SHA-256 is used. The algorithm consists of two main layers: confusion and diffusion. In the first layer, the nested chaotic map is employed to create the scrambled image. The scrambled image is obtained through the ascending sorting of the first component of the nested chaotic index sequence. To ensure higher sensitivity, higher complexity and higher security, DNA sequence and DNA operator are employed additionally with the nested chaotic map and hash algorithm to modify the pixel values. The important advantages of our algorithm are the improvement of Number of Pixel Change Rate (NPCR), Unified Average Changing Intensity (UACI) and entropy, which improve resistivity against several attacks. Experimental results and relevant security analysis demonstrated that our proposed encryption scheme has the highest security level because it is more complicated, and it has a sufficiently large key space. The proposed method is compared to other recent image encryption schemes using different security analysis factors, including NPCR, UACI, correlation coefficients (CCs), encryption quality (EQ) and entropy. It is also resistant to noise (Salt and Pepper, Gaussian and speckle) and data loss attacks. The illustrated results demonstrated that the proposed image encryption scheme is efficient, and can be adopted for image encryption and transmission.


2015 ◽  
Vol 15 (03n04) ◽  
pp. 1540005
Author(s):  
FENGHE WANG ◽  
XU AN WANG ◽  
CHUNXIAO WANG

A lattice-based broadcast encryption scheme is proposed for ad hoc networks in this paper. The proposed scheme is dynamical and anonymous simultaneously. The achievements of the dynamic and anonymity properties are efficient. In fact, the broadcaster can send the message to any receivers set without any added operations. The anonymity properties of the proposed scheme can protect the identity of an authorized receiver. Both dynamic and anonymity properties are important for broadcast encryption to used in many cases like wireless ad hoc network. The semantic security of the proposed scheme is proven in the standard model under the hardness of the learning with errors problem (LWE). Compared with known lattice-based broadcast encryption schemes, the proposed scheme shares some advantages with respect to the ciphtertext length and the message-ciphtertext expanse factor.


Author(s):  
Ali A. Yassin ◽  
Abdullah Mohammed Rashid ◽  
Abdulla J. Yassin ◽  
Hamid Alasadi

Recently, the concept of DNA has been invested in computing technology in different ways which linking information technology and biological sciences. There are several encryption algorithms based on DNA encoding that has been proposed, which leads to generating a new direction in image encryption. However, the DNA encryption scheme has drawbacks such as expensive experimental equipment, difficult operations, and hard to hold its biotechnology. Additionally, during careful cryptanalysis that applied to most of these image encryption schemes, we notice that DNA operators can only influence one DNA base, which causes poor diffusion. Our proposed scheme is not applied complex biological operation but just is given to improve the diffusion ability of image encryption scheme by using DNA sequence and DCT transform. Our works overcome above-aforementioned issues. Furthermore, empirical results on real images and security analysis demonstrate that our proposed scheme not only has flexibility and efficiency encryption scheme but also has the ability to resist well-known attacks such as entropy attack, differential attack, statistical attack, chosen/known plain image attack. Additionally, our work enjoys several strong characteristics as follows: (1) the decryption error is very low to recover the original image; (2) Once key for each encryption process and if the user wants to use the same key in many times, our proposed scheme supports secret key sensitivity; (3) the value of correlation of the encrypted image is null; (4) the scrambling process is good and generate high disorder at the output. As a result, our proposed scheme achieves a good balance between strong security and high performance.


Technologies ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Ahmed EL-YAHYAOUI ◽  
Mohamed Dafir ECH-CHERIF EL KETTANI

Performing smart computations in a context of cloud computing and big data is highly appreciated today. It allows customers to fully benefit from cloud computing capacities (such as processing or storage) without losing confidentiality of sensitive data. Fully homomorphic encryption (FHE) is a smart category of encryption schemes that enables working with the data in its encrypted form. It permits us to preserve confidentiality of our sensible data and to benefit from cloud computing capabilities. While FHE is combined with verifiable computation, it offers efficient procedures for outsourcing computations over encrypted data to a remote, but non-trusted, cloud server. The resulting scheme is called Verifiable Fully Homomorphic Encryption (VFHE). Currently, it has been demonstrated by many existing schemes that the theory is feasible but the efficiency needs to be dramatically improved in order to make it usable for real applications. One subtle difficulty is how to efficiently handle the noise. This paper aims to introduce an efficient and symmetric verifiable FHE based on a new mathematic structure that is noise free. In our encryption scheme, the noise is constant and does not depend on homomorphic evaluation of ciphertexts. The homomorphy of our scheme is obtained from simple matrix operations (addition and multiplication). The running time of the multiplication operation of our encryption scheme in a cloud environment has an order of a few milliseconds.


2015 ◽  
Vol 25 (2) ◽  
pp. 415-430
Author(s):  
Zhengan Huang ◽  
Shengli Liu ◽  
Baodong Qin ◽  
Kefei Chen

Abstract Fehr et al. (2010) proposed the first sender-equivocable encryption scheme secure against chosen-ciphertext attacks (NCCCA) and proved that NC-CCA security implies security against selective opening chosen-ciphertext attacks (SO-CCA). The NC-CCA security proof of the scheme relies on security against substitution attacks of a new primitive, the “crossauthentication code”. However, the security of the cross-authentication code cannot be guaranteed when all the keys used in the code are exposed. Our key observation is that, in the NC-CCA security game, the randomness used in the generation of the challenge ciphertext is exposed to the adversary. Based on this observation, we provide a security analysis of Fehr et al.’s scheme, showing that its NC-CCA security proof is flawed. We also point out that the scheme of Fehr et al. encrypting a single-bit plaintext can be refined to achieve NC-CCA security, free of the cross-authentication code. Furthermore, we propose the notion of “strong cross-authentication code”, apply it to Fehr et al.’s scheme, and show that the new version of the latter achieves NC-CCA security for multi-bit plaintexts.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Adrian-Viorel Diaconu ◽  
Khaled Loukhaoukha

A recently proposed secure image encryption scheme has drawn attention to the limited security offered by chaos-based image encryption schemes (mainly due to their relatively small key space) proposing a highly robust approach, based on Rubik's cube principle. This paper aims to study a newly designed image cryptosystem that uses the Rubik's cube principle in conjunction with a digital chaotic cipher. Thus, the original image is shuffled on Rubik's cube principle (due to its proven confusion properties), and then XOR operator is applied to rows and columns of the scrambled image using a chaos-based cipher (due to its proven diffusion properties). Finally, the experimental results and security analysis show that the newly proposed image encryption scheme not only can achieve good encryption and perfect hiding ability but also can resist any cryptanalytic attacks (e.g., exhaustive attack, differential attack, statistical attack, etc.).


Entropy ◽  
2021 ◽  
Vol 23 (9) ◽  
pp. 1221
Author(s):  
Wenhao Yan ◽  
Zijing Jiang ◽  
Xin Huang ◽  
Qun Ding

Chaos is considered as a natural candidate for encryption systems owing to its sensitivity to initial values and unpredictability of its orbit. However, some encryption schemes based on low-dimensional chaotic systems exhibit various security defects due to their relatively simple dynamic characteristics. In order to enhance the dynamic behaviors of chaotic maps, a novel 3D infinite collapse map (3D-ICM) is proposed, and the performance of the chaotic system is analyzed from three aspects: a phase diagram, the Lyapunov exponent, and Sample Entropy. The results show that the chaotic system has complex chaotic behavior and high complexity. Furthermore, an image encryption scheme based on 3D-ICM is presented, whose security analysis indicates that the proposed image encryption scheme can resist violent attacks, correlation analysis, and differential attacks, so it has a higher security level.


2013 ◽  
Vol 427-429 ◽  
pp. 2163-2169 ◽  
Author(s):  
Xing Wen Zhao ◽  
Hui Li

Broadcast encryption provides a convenient method to distribute digital content to subscribers over an insecure broadcast channel so that only the qualified users can recover the data. In some broadcast encryption based systems such as pay-TV, multiple ciphertext headers (via multiple channels) are needed since the sender needs to send various contents to different groups of subscribers. Each receiver needs to store all headers in order to switch channel fluently. Recently, Phan et al. described a multi-channel broadcast encryption scheme, in which the sender encapsulates multiple ephemeral keys into one ciphertext header so that each receiver only stores one ciphertext header and still can recover various ephemeral keys for different contents. We present an improvement on their scheme, which will reduce the size of public key and the computation cost for decryption. The improved scheme can be used to construct efficient dynamically privileged broadcast encryption system.


Sign in / Sign up

Export Citation Format

Share Document