scholarly journals Development of a Compact and Low-Cost Weather Station for Renewable Energy Applications

Author(s):  
Jose A. Salgado ◽  
Miguel C. Feio ◽  
Luis M. Silva ◽  
Vitor Monteiro ◽  
Joao L. Afonso ◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2234 ◽  
Author(s):  
Carlos Morón ◽  
Jorge Diaz ◽  
Daniel Ferrández ◽  
Pablo Saiz

The production of energy at the global level is conditioned by the use of fossil fuels that have a great environmental impact. In the last decades, renewable energy production systems have been implemented, and networks of nearly zero-energy buildings have been created, with a consequent complexity in the design phase in order to optimize the results. In this way, electronic prototype development methods like the one that is proposed in this paper improve the tasks of design and modelling. Thus, a new weather station based on an Arduino platform has been developed to collect and store ambient temperature, relative humidity, barometric pressure, wind speed and air quality data, comparing the obtained data to those obtained using a validation station containing commercial sensors. The results show how the use of low cost Arduino sensors allow one to obtain similar values to those collected by more professional meteorological stations with insignificant scatter between both technologies.


Author(s):  
S. Saravanan ◽  
P. Usha Rani ◽  
Mohan P. Thakre

This article discusses a transformer-free, high-efficiency DC-DC converter besides renewable energy applications. The traditional buck-boost, classic Zeta, Sepic, and Cuk converter does have the benefits of a simple design, low cost, as well as the capacity to execute voltage step-up and step-down. Conversely, because of the detrimental consequences of the parasitic constraints of the device, the voltage conversion gain of the traditional DC-DC converter is much more restricted and the efficiency is also significantly smaller, whereas this proposed converter does have a higher voltage gain and efficiency because it is used in a single power switch, resulting in reduced switching losses and voltage stress. The said converter's design is very simple, which simplifies the operation control and reduces switching and conduction losses, leading to an efficiency of 97.4 percent. This converter seems to have the same capabilities as the Zeta converter, including continuous desired output current and desired buck-boost operation. Such an article offers the operation principle and steady evaluation, as well as a comparison with other existing high step-up configurations. The proposed converter employs a fuzzy logic controller, which improves the voltage level as well as reduces the time taken to set the voltage output of a conventional PI and ANN controller, especially in comparison to the FLC controller. For deployment, Experimental Result and MATLAB/Simulink has been used, and the modeling results indicate that the proposed controller performance has improved


Author(s):  
Dmitri Vinnikov ◽  
Oleksandr Husev ◽  
Indrek Roasto

Lossless Dynamic Models of the Quasi-Z-Source Converter FamilyThis paper is devoted to the quasi-Z-source (qZS) converter family. Recently, the qZS-converters have attracted attention because of their specific properties of voltage boost and buck functions with a single switching stage, which could be especially beneficial in renewable energy applications. As main representatives of the qZS-converter family, the traditional quasi-Z-source inverter as well as two novel extended boost quasi-Z-source inverters are discussed. Lossless dynamic models of these topologies are presented and analyzed.


Sign in / Sign up

Export Citation Format

Share Document