switching losses
Recently Published Documents


TOTAL DOCUMENTS

695
(FIVE YEARS 257)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 18 (1) ◽  
pp. 48-57
Author(s):  
Aws Al-Jrew ◽  
Jawad Mahmood ◽  
Ramzy Ali

In this article, a comparison of innovative multilevel inverter topology with standard topologies has been conducted. The proposed single phase five level inverter topology has been used for induction heating system. This suggested design generates five voltage levels with a fewer number of power switches. This reduction in number of switches decreases the switching losses and the number of driving circuits and reduce the complexity of control circuit. It also reduces the cost and size for the filter used. Analysis and comparison has been done among the conventional topologies (neutral clamped and cascade H-bridge multilevel inverters) with the proposed inverter topology. The analysis includes the total harmonic distortion THD, efficiency and overall performance of the inverter systems. The simulation and analysis have been done using MATLAB/ SIMULINK. The results show good performance for the proposed topology in comparison with the conventional topologies.


Author(s):  
Yun Xia ◽  
wanjun Chen ◽  
Chao Liu ◽  
Ruize Sun ◽  
zhaoji Li ◽  
...  

Abstract High reverse recovery charge (QRR) and resultant high switching losses have become the main factors that constrain the performance and application area of superjunction MOSFET (SJ-MOSFET). To reduce QRR, an SJ-MOSFET with reduced hole-barrier is proposed and demonstrated. By introducing a Schottky contact on the bottom of the n-pillar at the drain side, the barrier for the hole carrier is dramatically reduced in the reverse conduction state. As a result, the hole carrier in the drift region is significantly reduced, which results in a low QRR and enhanced reverse recovery performance. Compared with the conventional SJ-MOSFET (Conv-SJ-MOSFET), the proposed device achieves 64.6% lower QRR with almost no sacrifice in other characteristics. The attenuated QRR accounts for a 19.6% ~ 46.8% reduction in total power losses with operation frequency at 5 ~ 200 kHz, demonstrating the great potential of the proposed SJ-MOSFET used in power conversion systems.


2022 ◽  
Vol 2022 ◽  
pp. 1-23
Author(s):  
R. Uthirasamy ◽  
V. Kumar Chinnaiyan ◽  
S. Vishnukumar ◽  
Alagar Karthick ◽  
V. Mohanavel ◽  
...  

Integration of renewable energy sources to the grid-connected system has influenced scholarly research in recent times to evolve solutions for power electronic conversion. Particularly, solar photovoltaic (SPV), being a resource available throughout the year, demands needful research to meet the demand for industrial applications. To facilitate SPV, multilevel inverters (MLIs) and cascaded H-bridge inverters (CHBIs) are proposed in the literature to meet the power requirement. However, these circuits suffer from efficiency loss, economic aspects of DC sources usage, and switching losses. Hence, in this research, a new power converter topology is projected to improve the overall efficiency of SPV systems. Further, a three-level approach involving (i) SPV Panel-Temperature Reduction (SPV-PTR) Setup, (ii) Boost Multilevel Direct Current Link Converter (BMLDCLC), and (iii) use of effective snubber modules (SM) are effectively handled to promote the industry readiness of the proposed system. From a detailed system investigation, it is seen that the proposed arrangement has minimized the power loss to ensure better quality in output. Furthermore, the software-based results and hardware setup of the planned comprehensive converter have shown promising results in terms of (i) reduced voltage stress, (ii) reduced total harmonic distortion (THD) without filter component, and (iii) reduced power loss. It is observed that the experimental setup has reported a 12.9% of excess heat removal, 5% decrease in harmonics, and 33% switch reduction than the existing MLI schemes. In addition, the proposed setup is suggested to apply for industrial purposes indicate its efficacy to be a solution in real time.


2022 ◽  
Vol 4 (1) ◽  
pp. 1-13
Author(s):  
Madhu Andela ◽  
Ahmmadhussain Shaik ◽  
Saicharan Beemagoni ◽  
Vishal Kurimilla ◽  
Rajagopal Veramalla ◽  
...  

This paper deals with a reduced switch multi-level inverter for the solar photovoltaic system-based 127-level multi-level inverter. The proposed technique uses the minimum number of switches to achieve the maximum steps in staircase AC output voltage when compared to the flying capacitor multi-level inverter, cascaded type multilevel inverter and diode clamped multi-level inverter. The use of a minimum number of switches decreases the cost of the system. To eliminate the switching losses, in this topology a square wave switch is used instead of pulse width modulation. Thereby the total harmonic distortion (THD) and harmonics have been reduced in the pulsating AC output voltage waveform. The performance of 127-level MLI is compared with 15 level, 31-level and 63-level multilevel inverters. The outcomes of the solar photovoltaic system-based 127-level multi-level inverter have been simulated in a MATLAB R2009b environment.


Author(s):  
Andrey Chepiga ◽  
Aleksey Anuchin

The medium voltage frequency converters mostly utilize the low-voltage multi-cell topology. However, available PWM techniques have some drawbacks, such as time delayed operation, which limits current loop response time, need reinitialization of the PWM carriers in case of cell failure, or have unequal distribution of losses. To solve the set of these problems the PWM strategy, which utilize PWM in a single cell with sequential cell switching, was introduced. This PWM strategy can operate in case of partial inverter failures, provides maximum available voltage to the load and has low response time due to operation at high PWM frequency of a single cell, while the average switching frequency is limited. The proposed PWM technique was examined using a model, where the switching losses distribution and high quality of the output voltage were confirmed.


2021 ◽  
Vol 2131 (4) ◽  
pp. 042094
Author(s):  
A V Agunov ◽  
A T Burkov ◽  
V G Zhemchugov ◽  
K K Stepanova

Abstract The main features of the procedure for predicting electrical losses in power semiconductor converters of AC-DC and DC-AC systems of high voltage DC traction are presented. The procedure is based on simulation of multi-cycle switching of IGBT modules in combination with simulation of static and dynamic switching losses in traction converter circuits. The models take into account the switching frequency, physical processes in the formation of voltage and current diagrams at transition processes and in the static state of the switch elements. The model of loss assessment using particular types of IGBT modules is the basis for calculating the energy efficiency characteristics of traction converters for advanced high-voltage direct current traction systems.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7780
Author(s):  
Marco Faifer ◽  
Luigi Piegari ◽  
Marco Rossi ◽  
Sergio Toscani

Power electronic converters represent a pillar of modern power systems, especially since generation from renewable energy sources, such as photovoltaics, have been introduced. One of their main characteristics consists of the high flexibility in converting different voltage levels and waveforms. As for all the conversion devices, they are subjected to unavoidable losses introduced by non-ideal components. For this reason, in the last few decades numerous research activities have been devoted to model their behavior and predicting the global efficiency. In spite of the number of scientific publications on the topic, the non-idealities have been rarely studied in terms of their impact on the input-output characteristics of the converter. In this paper, the conventional equivalent circuit of a step-up DC/DC converter has been upgraded in order to introduce the effects of both conduction and switching losses. The obtained formulation, applicable to all DC/DC converters, allows a more accurate average model that is particularly suitable for the study of multi-converter architectures, as for the most recent renewable energy sources applications. Finally, thanks to a dedicated test setup, the results of an experimental campaign demonstrate how the new formulation faithfully predicts its electrical behavior.


2021 ◽  
Author(s):  
Ajit Kanale ◽  
Sneha Narasimhan ◽  
Tzu-Hsuan Cheng ◽  
Aditi Agarwal ◽  
Suyash Sushilkumar Shah ◽  
...  

2021 ◽  
Vol 2096 (1) ◽  
pp. 012196
Author(s):  
V S Klimash ◽  
B D Tabarov

Abstract The article is devoted to issues related to increasing the energy efficiency of industrial electrothermal installations, both in starting and stationary operating modes due to the use of capacitors and thyristor starters with special control. The results of a significant reduction in the duration of the transient process, elimination of surges and asymmetry of starting currents and voltage drawdowns are presented. The results of full compensation of the reactive power of the network in the steady-state mode are also presented. It is shown that the starting currents do not exceed their steady-state values and that the shutdown of the electrothermal installation is performed without the occurrence of an arc and switching losses at the contacts of the switches. Researches of an electrothermal installation with a capacity of 750 kV⋅A and a voltage of 380 / 80 V are made on the model in the Matlab environment.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012195
Author(s):  
V S Klimash ◽  
B D Tabarov ◽  
E G Antonov

Abstract It is proposed to reduce the number of electrical and electronic devices by 1.5 times in three-stage capacitor installations by changing the connections in the power circuit and using a special control method. The new principle of construction of reactive power compensators will allow, with minimal changes and additions to existing installations, to reduce the costs of their production and the cost of finished products. The existing installations contain three blocks of the same type of capacitors, each of which is equipped with an electrical and electronic device and resistors for their discharge. It is proposed to connect two of these three blocks in parallel without changing the design of the products, using a common electronic device for connecting and disconnecting the resulting block of capacitors with double capacity and a common electrical device in the capacitor discharge circuit of this block. A model is presented in the Matlab environment for the study of dynamic and stationary processes of three-stage reactive power regulation in a new scheme of a capacitor plant. Numerical experiments have shown that when the installation is switched on and off, as well as when switching from one stage of reactive power regulation to another, the proposed device does not create bursts of starting currents. After starting, it almost immediately enters the steady-state operation mode and when switching stages, it also immediately passes from one level of the steady-state values of such to another level of their steady-state values. The installation is switched off without switching losses and without arcing on the mechanical contacts, since thyristor switches with natural switching are switched off first, and then the de-energized mains switch.


Sign in / Sign up

Export Citation Format

Share Document