PP-PLL: Probability Propagation for Partial Label Learning

Author(s):  
Kaiwei Sun ◽  
Zijian Min ◽  
Jin Wang
Author(s):  
M. JULIA FLORES ◽  
JOSE A. GÁMEZ ◽  
KRISTIAN G. OLESEN

When a Bayesian network (BN) is modified, for example adding or deleting a node, or changing the probability distributions, we usually will need a total recompilation of the model, despite feeling that a partial (re)compilation could have been enough. Especially when considering dynamic models, in which variables are added and removed very frequently, these recompilations are quite resource consuming. But even further, for the task of building a model, which is in many occasions an iterative process, there is a clear lack of flexibility. When we use the term Incremental Compilation or IC we refer to the possibility of modifying a network and avoiding a complete recompilation to obtain the new (and different) join tree (JT). The main point we intend to study in this work is JT-based inference in Bayesian networks. Apart from undertaking the triangulation problem itself, we have achieved a great improvement for the compilation in BNs. We do not develop a new architecture for BNs inference, but taking some already existing framework JT-based for probability propagation such as Hugin or Shenoy and Shafer, we have designed a method that can be successfully applied to get better performance, as the experimental evaluation will show.


Author(s):  
Haobo Wang ◽  
Yuzhou Qiang ◽  
Chen Chen ◽  
Weiwei Liu ◽  
Tianlei Hu ◽  
...  

Author(s):  
Gengyu Lyu ◽  
Songhe Feng ◽  
Tao Wang ◽  
Congyan Lang ◽  
Yidong Li

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chaofan Hu ◽  
Zhichao Zhou ◽  
Biao Wang ◽  
WeiGuang Zheng ◽  
Shuilong He

A new tensor transfer approach is proposed for rotating machinery intelligent fault diagnosis with semisupervised partial label learning in this paper. Firstly, the vibration signals are constructed as a three-way tensor via trial, condition, and channel. Secondly, for adapting the source and target domains tensor representations directly, without vectorization, the domain adaptation (DA) approach named tensor-aligned invariant subspace learning (TAISL) is first proposed for tensor representation when testing and training data are drawn from different distribution. Then, semisupervised partial label learning (SSPLL) is first introduced for tackling a problem that it is hard to label a large number of instances and there exists much data left to be unlabeled. Ultimately, the proposed method is used to identify faults. The effectiveness and feasibility of the proposed method has been thoroughly validated by transfer fault experiments. The experimental results show that the presented technique can achieve better performance.


Sign in / Sign up

Export Citation Format

Share Document