process variations
Recently Published Documents





Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 595
Loïc Massin ◽  
Cyril Lahuec ◽  
Fabrice Seguin ◽  
Vincent Nourrit ◽  
Jean-Louis de Bougrenet de la Tocnaye

We present the design, fabrication, and test of a multipurpose integrated circuit (Application Specific Integrated Circuit) in AMS 0.35 µm Complementary Metal Oxide Semiconductor technology. This circuit is embedded in a scleral contact lens, combined with photodiodes enabling the gaze direction detection when illuminated and wirelessly powered by an eyewear. The gaze direction is determined by means of a centroid computation from the measured photocurrents. The ASIC is used simultaneously to detect specific eye blinking sequences to validate target designations, for instance. Experimental measurements and validation are performed on a scleral contact lens prototype integrating four infrared photodiodes, mounted on a mock-up eyeball, and combined with an artificial eyelid. The eye-tracker has an accuracy of 0.2°, i.e., 2.5 times better than current mobile video-based eye-trackers, and is robust with respect to process variations, operating time, and supply voltage. Variations of the computed gaze direction transmitted to the eyewear, when the eyelid moves, are detected and can be interpreted as commands based on blink duration or using blinks alternation on both eyes.

Christian Steinfelder ◽  
Johann Acksteiner ◽  
Christina Guilleaume ◽  
Alexander Brosius

AbstractClinching is a joining process that is becoming more and more important in industry due to the increasing use of multi-material designs. Despite the already widespread use of the process, there is still a need for research to understand the mechanisms and design of clinched joints. In contrast to the tool parameters, process and material disturbances have not yet been investigated to a relatively large extent. However, these also have a great influence on the properties and applicability of clinching. The effect of process disturbances on the clinched joint are investigated with numerical and experimental methods. The investigated process variations are the history of the sheets using the pre-hardening of the material, different sheet thicknesses, sheet arrangements and punch strokes. For the consideration of the material history, a specimen geometry for pre-stretching specimens in uniaxial tension is used, from which the pre-stretched secondary specimens are taken. A finite element model is set up for the numerical investigations. Suitable clinching tools are selected. With the simulation, selected process influences can be examined. The effort of the numerical investigations is considerably reduced with the help of a statistical experimental design according to Taguchi. To confirm the simulation results, experimental investigations of the clinch point geometry by using micrographs and the shear strength of the clinched joint are performed. The analysis of the influence of difference disturbance factors on the clinching process demonstrate the importance of the holistic view of the clinching process.

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 193
Mohammad Arif Sobhan Bhuiyan ◽  
Md. Rownak Hossain ◽  
Khairun Nisa’ Minhad ◽  
Fahmida Haque ◽  
Mohammad Shahriar Khan Hemel ◽  

Systems-on-Chip’s (SoC) design complexity demands a high-performance linear regulator architecture to maintain a stable operation for the efficient power management of today’s devices. Over the decades, the low-dropout (LDO) voltage regulator design has gained attention due to its design scalability with better performance in various application domains. Industry professionals as well as academia have put forward their innovations such as event-driven explicit time-coding, exponential-ratio array, switched RC bandgap reference circuit, etc., to make a trade-off between several performance parameters such as die area, ripple rejection, supply voltage range, and current efficiency. However, current LDO architectures in micro and nanometer complementary metal–oxide–semiconductor (CMOS) technology face some challenges, such as short channel effects, gate leakage, fabrication difficulty, and sensitivity to process variations at nanoscale. This review presents the LDO architectures, optimization techniques, and performance comparisons in different LDO design domains such as digital, analog, and hybrid. In this review, various state-of-the-art circuit topologies, deployed for the betterment of LDO performance and focusing on the specific parameter up-gradation to the overall improvement of the functionality, are framed, which will serve as a comparative study and reference for researchers.

Yeni Li ◽  
Arvind Sundaram ◽  
Hany S. Abdel-Khalik ◽  
Paul W. Talbot

Mohd Syafiq Mispan ◽  
Aiman Zakwan Jidin ◽  
Muhammad Raihaan Kamarudin ◽  
Haslinah Mohd Nasir

An emerging technology known as Physical unclonable function (PUF) can provide a hardware root-of-trust in building the trusted computing system. PUF exploits the intrinsic process variations during the integrated circuit (IC) fabrication to generate a unique response. This unique response differs from one PUF to the other similar type of PUFs. Static random-access memory PUF (SRAM-PUF) is one of the memory-based PUFs in which the response is generated during the memory power-up process. Non-volatile memory (NVM) architecture like SRAM is available in off-the-shelf microcontroller devices. Exploiting the inherent SRAM as PUF could wide-spread the adoption of PUF. Therefore, in this study, we evaluate the suitability of inherent SRAM available in ATMega2560 microcontroller on Arduino platform as PUF that can provide a unique fingerprint. First, we analyze the start-up values (SUVs) of memory cells and select only the cells that show random values after the power-up process. Subsequently, we statistically analyze the characteristic of fifteen SRAM-PUFs which include uniqueness, reliability, and uniformity. Based on our findings, the SUVs of fifteen on-chip SRAMs achieve 42.64% uniqueness, 97.28% reliability, and 69.16% uniformity. Therefore, we concluded that the available SRAM in off-the-shelf commodity hardware has good quality to be used as PUF.

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261431
Fakir Sharif Hossain ◽  
Taiyeb Hasan Sakib ◽  
Muhammad Ashar ◽  
Rian Ferdian

Advanced Encryption Standard (AES) is the most secured ciphertext algorithm that is unbreakable in a software platform’s reasonable time. AES has been proved to be the most robust symmetric encryption algorithm declared by the USA Government. Its hardware implementation offers much higher speed and physical security than that of its software implementation. The testability and hardware Trojans are two significant concerns that make the AES chip complex and vulnerable. The problem of testability in the complex AES chip is not addressed yet, and also, the hardware Trojan insertion into the chip may be a significant security threat by leaking information to the intruder. The proposed method is a dual-mode self-test architecture that can detect the hardware Trojans at the manufacturing test and perform an online parametric test to identify parametric chip defects. This work contributes to partitioning the AES circuit into small blocks and comparing adjacent blocks to ensure self-referencing. The detection accuracy is sharpened by a comparative power ratio threshold, determined by process variations and the accuracy of the built-in current sensors. This architecture can reduce the delay, power consumption, and area overhead compared to other works.

Mohammadreza Rasekhi ◽  
Emad Ebrahimi ◽  
Hamed Aminzadeh

In this paper, an ultra-low power CMOS voltage reference capable of operating at sub-1[Formula: see text]V input supply is proposed. Four transistors biased in weak inversion are used to generate the required complementary-to-absolute-temperature (CTAT) and proportional-to-absolute-temperature (PTAT) voltages of the proposed circuit. Self-biasing of nature of the proposed configuration in the form of operational amplifier (opamp)-free ensure nano-power operation and eliminate the need for lateral bipolar junction transistors (BJTs) and offset cancelation techniques. A prototype of the circuit is designed and simulated in a standard 0.18-[Formula: see text]m CMOS process. Post-layout simulation results show that the circuit generates a reference voltage of 494[Formula: see text]mV with temperature coefficient (TC) of 58.4[Formula: see text]ppm/∘C across [Formula: see text]C to 85∘C; while the consuming power is lowered to 3.48[Formula: see text]nW at the minimum supply of 0.8[Formula: see text]V. The line sensitivity is 0.7%/V for the supply voltages from 0.8[Formula: see text]V to 1.8[Formula: see text]V, whereas the power supply ripple rejection (PSRR) is [Formula: see text]49.06[Formula: see text]dB at 1[Formula: see text]Hz. Monte Carlo simulation results of the voltage reference show a mean value of 497.2[Formula: see text]mV with [Formula: see text]/[Formula: see text] of 1.7%, demonstrating the robustness of the generated reference voltage against the process variations and mismatch.

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8302
Cancio Monteiro ◽  
Yasuhiro Takahashi

Low-power and secure crypto-devices are in crucial demand for the current emerging technology of the Internet of Things (IoT). In nanometer CMOS technology, the static and dynamic power consumptions are in a very critical challenge. Therefore, the FinFETs is an alternative technology due to its superior attributes of non-leakage power, intra-die variability, low-voltage operation, and lower retention voltage of SRAMs. In this study, our previous work on CMOS two-phase clocking adiabatic physical unclonable function (TPCA-PUF) is evaluated in a FinFET device with a 4-bits PUF circuit complexity. The TPCA-PUF-based shorted-gate (SG) and independent-gate (IG) modes of FinFETs are investigated under various ambient temperatures, process variations, and ±20% of supply voltage variations. To validate the proposed TPCA-PUF circuit, the QUALPFU-based Fin-FETs are compared in terms of cyclical energy dissipation, the security metrics of the uniqueness, the reliability, and the bit-error-rate (BER). The proposed TPCA-PUF is simulated using 45 nm process technology with a supply voltage of 1 V. The uniqueness, reliability, and the BER of the proposed TPCA-PUF are 50.13%, 99.57%, and 0.43%, respectively. In addition, it requires a start-up power of 18.32 nW and consumes energy of 2.3 fJ/bit/cycle at the reference temperature of 27 °C.

2021 ◽  
Vol 11 (4) ◽  
pp. 47
Hani H. Ahmad ◽  
Fadi R. Shahroury ◽  
Ibrahim Abuishmais

In this work, a multi-independent-output, multi-string, high-efficiency, boost-converter-based white LED (WLED) driver architecture is proposed. It utilizes a single inductor main switch with a common maximum duty cycle controller (MDCC) in the feedback loop. A simple pulse skipping controller (PSC) is utilized in each high-side switch of the multiple independent outputs. Despite the presence of multiple independent outputs, a single over-voltage protection (OVP) circuit is used at the output to protect the circuit from any voltage above 27 V. An open circuit in any of the strings is addressed, in addition to the LED’s short-circuit conditions. Excellent current matching between strings is achieved, despite the low ON-resistance (Rdson) of transistors used in the 40 nm process. Most circuits are designed in digital CMOS logic to overcome the extreme process variations in the 40 nm node. Compared to a single output parallel strings topology, a 50% improvement in efficiency is achieved relative to extremely unbalanced strings. Three strings are used in this proposal, but more strings can be supported with the same topology. Each string is driven by a 25 mA current sink. An input voltage of 3.2–4.2 V and an output voltage up to 27 V are supported.

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Tulasi Naga Jyothi Kolanti ◽  
Vasundhara Patel K.S.

Purpose The purpose of this paper is to design multiplexers (MUXs) based on ternary half subtractor and full subtractor using carbon nanotube field-effect transistors. Design/methodology/approach Conventionally, the binary logic functions are developed by using the binary decision diagram (BDD) systems. Each node in BDD is replaced by 2:1 MUX to implement the digital circuits. Similarly, in the ternary decision diagram, each node has to be replaced by 3:1 MUX. In this paper, ternary transformed BDD is used to design the ternary subtractors using 2:1 MUXs. Findings The performance of the proposed ternary half subtractor and full subtractor using the 2:1 MUX are compared with the 3:1 MUX-based ternary circuits. It has been observed that the delay, power and power delay product values are reduced, respectively, by 67.6%, 84.3%, 94.9% for half subtractor and 67.7%, 70.1%, 90.3% for full subtractor. From the Monte Carlo simulations, it is observed that the propagation delay and power dissipation of the proposed subtractors are increased by increasing the channel length due to process variations. The stability test is also performed and observed that the stability increases as the channel length and diameter are increased. Originality/value The proposed half subtractor and full subtractor show better performance over the existing subtractors.

Sign in / Sign up

Export Citation Format

Share Document