Fine-Grained Map Coloring Web Service for JavaScript

Author(s):  
Tetsuya Nakai ◽  
Sachio Saiki ◽  
Masahide Nakamura
Author(s):  
Yixiong Chen ◽  
Yang Yang ◽  
Zhanyao Lei ◽  
Mingyuan Xia ◽  
Zhengwei Qi

AbstractModern RESTful services expose RESTful APIs to integrate with diversified applications. Most RESTful API parameters are weakly typed, which greatly increases the possible input value space. This poses difficulties for automated testing tools to generate effective test cases to reveal web service defects related to parameter validation. We call this phenomenon the type collapse problem. To remedy this problem, we introduce FET (Format-encoded Type) techniques, including the FET, the FET lattice, and the FET inference to model fine-grained information for API parameters. Enhanced by FET techniques, automated testing tools can generate targeted test cases. We demonstrate Leif, a trace-driven fuzzing tool, as a proof-of-concept implementation of FET techniques. Experiment results on 27 commercial services show that FET inference precisely captures documented parameter definitions, which helps Leif to discover 11 new bugs and reduce $$72\% \sim 86\%$$ 72 % ∼ 86 % fuzzing time as compared to state-of-the-art fuzzers.


2013 ◽  
Vol 321-324 ◽  
pp. 1209-1212
Author(s):  
Chong Wang ◽  
Yi Xin Ding ◽  
Zheng Yang Ding

A web replay method is proposed in this paper for highlights in soccer videos. Firstly, automatically detection and fine-grained semantic annotation are introduced for soccer highlights. Secondly, an adaptive grass color model and several heuristic rules are used to improve the performance of the method. Finally, a database for highlights is established for web service. Experimental results show that the proposed method has excellent analyzing speed, accuracy and practicability.


Author(s):  
Dimitrios Kourtesis ◽  
Iraklis Paraskakis

The availability of sophisticated Web service discovery mechanisms is an essential prerequisite for increasing the levels of efficiency and automation in EAI. In this chapter, we present an approach for developing service registries building on the UDDI standard and offering semantically-enhanced publication and discovery capabilities in order to overcome some of the known limitations of conventional service registries. The approach aspires to promote efficiency in EAI in a number of ways, but primarily by automating the task of evaluating service integrability on the basis of the input and output messages that are defined in the Web service’s interface. The presented solution combines the use of three technology standards to meet its objectives: OWL-DL, for modelling service characteristics and performing fine-grained service matchmaking via DL reasoning, SAWSDL, for creating semantically annotated descriptions of service interfaces, and UDDI, for storing and retrieving syntactic and semantic information about services and service providers.


2008 ◽  
pp. 138-161
Author(s):  
Rafae Bhatti ◽  
Daniel Sanz ◽  
Elisa Bertino ◽  
Arif Ghafoor

This chapter describes a policy-based authorization framework to apply fine-grained access control on Web services. The framework is designed as a profile of the well-known WS-Policy specification tailored to meet the access control requirements in Web services by integrating WS-Policy with an access control policy specification language, X-GTRBAC. The profile is aimed at bridging the gap between available policy standards for Web services and existing policy specification languages for access control. The profile supports the WS-Policy Attachment specification, which allows separate policies to be associated with multiple components of a Web service description, and one of our key contributions is an algorithm to compute the effective policy for the Web service given the multiple policy attachments. To allow Web service applications to use our solution, we have adopted a component-based design approach based on well-known UML notations. We have also prototyped our architecture in a loosely coupled Web services environment.


Author(s):  
Richard S. Chemock

One of the most common tasks in a typical analysis lab is the recording of images. Many analytical techniques (TEM, SEM, and metallography for example) produce images as their primary output. Until recently, the most common method of recording images was by using film. Current PS/2R systems offer very large capacity data storage devices and high resolution displays, making it practical to work with analytical images on PS/2s, thereby sidestepping the traditional film and darkroom steps. This change in operational mode offers many benefits: cost savings, throughput, archiving and searching capabilities as well as direct incorporation of the image data into reports.The conventional way to record images involves film, either sheet film (with its associated wet chemistry) for TEM or PolaroidR film for SEM and light microscopy. Although film is inconvenient, it does have the highest quality of all available image recording techniques. The fine grained film used for TEM has a resolution that would exceed a 4096x4096x16 bit digital image.


Author(s):  
Steven D. Toteda

Zirconia oxygen sensors, in such applications as power plants and automobiles, generally utilize platinum electrodes for the catalytic reaction of dissociating O2 at the surface. The microstructure of the platinum electrode defines the resulting electrical response. The electrode must be porous enough to allow the oxygen to reach the zirconia surface while still remaining electrically continuous. At low sintering temperatures, the platinum is highly porous and fine grained. The platinum particles sinter together as the firing temperatures are increased. As the sintering temperatures are raised even further, the surface of the platinum begins to facet with lower energy surfaces. These microstructural changes can be seen in Figures 1 and 2, but the goal of the work is to characterize the microstructure by its fractal dimension and then relate the fractal dimension to the electrical response. The sensors were fabricated from zirconia powder stabilized in the cubic phase with 8 mol% percent yttria. Each substrate was sintered for 14 hours at 1200°C. The resulting zirconia pellets, 13mm in diameter and 2mm in thickness, were roughly 97 to 98 percent of theoretical density. The Engelhard #6082 platinum paste was applied to the zirconia disks after they were mechanically polished ( diamond). The electrodes were then sintered at temperatures ranging from 600°C to 1000°C. Each sensor was tested to determine the impedance response from 1Hz to 5,000Hz. These frequencies correspond to the electrode at the test temperature of 600°C.


Author(s):  
J. W. Mellowes ◽  
C. M. Chun ◽  
I. A. Aksay

Mullite (3Al2O32SiO2) can be fabricated by transient viscous sintering using composite particles which consist of inner cores of a-alumina and outer coatings of amorphous silica. Powder compacts prepared with these particles are sintered to almost full density at relatively low temperatures (~1300°C) and converted to dense, fine-grained mullite at higher temperatures (>1500°C) by reaction between the alumina core and the silica coating. In order to achieve complete mullitization, optimal conditions for coating alumina particles with amorphous silica must be achieved. Formation of amorphous silica can occur in solution (homogeneous nucleation) or on the surface of alumina (heterogeneous nucleation) depending on the degree of supersaturation of the solvent in which the particles are immersed. Successful coating of silica on alumina occurs when heterogeneous nucleation is promoted and homogeneous nucleation is suppressed. Therefore, one key to successful coating is an understanding of the factors such as pH and concentration that control silica nucleation in aqueous solutions. In the current work, we use TEM to determine the optimal conditions of this processing.


Sign in / Sign up

Export Citation Format

Share Document