On a Solution of an Optimal Control Problem for a Linear Fractional-Order System

Author(s):  
Mikhail I. Gomoyunov
2014 ◽  
Vol 69 (5-6) ◽  
pp. 225-231 ◽  
Author(s):  
Anwar Zeb ◽  
Gul Zaman ◽  
Il Hyo Jung ◽  
Madad Khan

This paper deals with the optimal control problem in the giving up smoking model of fractional order. For the eradication of smoking in a community, we introduce three control variables in the form of education campaign, anti-smoking gum, and anti-nicotive drugs/medicine in the proposed fractional order model. We discuss the necessary conditions for the optimality of a general fractional optimal control problem whose fractional derivative is described in the Caputo sense. In order to do this, we minimize the number of potential and occasional smokers and maximize the number of ex-smokers. We use Pontryagin’s maximum principle to characterize the optimal levels of the three controls. The resulting optimality system is solved numerically by MATLAB.


2017 ◽  
Vol 10 (07) ◽  
pp. 1750095 ◽  
Author(s):  
N. H. Sweilam ◽  
O. M. Saad ◽  
D. G. Mohamed

In this paper, optimal control for a novel West Nile virus (WNV) model of fractional order derivative is presented. The proposed model is governed by a system of fractional differential equations (FDEs), where the fractional derivative is defined in the Caputo sense. An optimal control problem is formulated and studied theoretically using the Pontryagin maximum principle. Two numerical methods are used to study the fractional-order optimal control problem. The methods are, the iterative optimal control method (OCM) and the generalized Euler method (GEM). Positivity, boundedness and convergence of the IOCM are studied. Comparative studies between the proposed methods are implemented, it is found that the IOCM is better than the GEM.


Sign in / Sign up

Export Citation Format

Share Document