Depthwise Separable Convolutional Neural Network for Confidential Information Analysis

Author(s):  
Yue Lu ◽  
Jianguo Jiang ◽  
Min Yu ◽  
Chao Liu ◽  
Chaochao Liu ◽  
...  
2018 ◽  
Vol 10 (12) ◽  
pp. 116 ◽  
Author(s):  
Yonghua Zhu ◽  
Xun Gao ◽  
Weilin Zhang ◽  
Shenkai Liu ◽  
Yuanyuan Zhang

The prevalence that people share their opinions on the products and services in their daily lives on the Internet has generated a large quantity of comment data, which contain great business value. As for comment sentences, they often contain several comment aspects and the sentiment on these aspects are different, which makes it meaningless to give an overall sentiment polarity of the sentence. In this paper, we introduce Attention-based Aspect-level Recurrent Convolutional Neural Network (AARCNN) to analyze the remarks at aspect-level. The model integrates attention mechanism and target information analysis, which enables the model to concentrate on the important parts of the sentence and to make full use of the target information. The model uses bidirectional LSTM (Bi-LSTM) to build the memory of the sentence, and then CNN is applied to extracting attention from memory to get the attentive sentence representation. The model uses aspect embedding to analyze the target information of the representation and finally the model outputs the sentiment polarity through a softmax layer. The model was tested on multi-language datasets, and demonstrated that it has better performance than conventional deep learning methods.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document