Boundary Value Problems of the Plane Theory of Elasticity for Materials with Voids

Author(s):  
Bakur Gulua ◽  
Roman Janjgava
2021 ◽  
pp. 108128652199641
Author(s):  
Mikhail D Kovalenko ◽  
Irina V Menshova ◽  
Alexander P Kerzhaev ◽  
Guangming Yu

We construct exact solutions of two inhomogeneous boundary value problems in the theory of elasticity for a half-strip with free long sides in the form of series in Papkovich–Fadle eigenfunctions: (a) the half-strip end is free and (b) the half-strip end is firmly clamped. Initially, we construct a solution of the inhomogeneous problem for an infinite strip. Subsequently, the corresponding solutions for a half-strip are added to this solution, whereby the boundary conditions at the end are satisfied. The Papkovich orthogonality relation is used to solve the inhomogeneous problem in a strip.


2019 ◽  
Vol 24 (1) ◽  
pp. 33 ◽  
Author(s):  
Mikhail Nikabadze ◽  
Armine Ulukhanyan

The statement of the eigenvalue problem for a tensor–block matrix (TBM) of any orderand of any even rank is formulated, and also some of its special cases are considered. In particular,using the canonical presentation of the TBM of the tensor of elastic modules of the micropolartheory, in the canonical form the specific deformation energy and the constitutive relations arewritten. With the help of the introduced TBM operator, the equations of motion of a micropolararbitrarily anisotropic medium are written, and also the boundary conditions are written down bymeans of the introduced TBM operator of the stress and the couple stress vectors. The formulationsof initial-boundary value problems in these terms for an arbitrary anisotropic medium are given.The questions on the decomposition of initial-boundary value problems of elasticity and thin bodytheory for some anisotropic media are considered. In particular, the initial-boundary problems of themicropolar (classical) theory of elasticity are presented with the help of the introduced TBM operators(tensors–operators). In the case of an isotropic micropolar elastic medium (isotropic and transverselyisotropic classical media), the TBM operator (tensors–operators) of cofactors to TBM operators(tensors–tensors) of the initial-boundary value problems are constructed that allow decomposinginitial-boundary value problems. We also find the determinant and the tensor of cofactors to the sumof six tensors used for decomposition of initial-boundary value problems. From three-dimensionaldecomposed initial-boundary value problems, the corresponding decomposed initial-boundary valueproblems for the theories of thin bodies are obtained.


Sign in / Sign up

Export Citation Format

Share Document