scholarly journals Solving the EMI Equations using Finite Element Methods

Author(s):  
Miroslav Kuchta ◽  
Kent-André Mardal ◽  
Marie E. Rognes

Abstract This chapter discusses 2 X 2 symmetric variational formulations and associated finite element methods for the EMI equations. We demonstrate that the presented methods converge at expected rates, and compare the approaches in terms of approximation of the transmembrane potential. Overall, the choice of which formulation to employ for solving EMI models becomes largely a matter of desired accuracy and available computational resources.

Author(s):  
Manuel Sparta ◽  
Damiano Varagnolo ◽  
Kristian Stråbø ◽  
Svenn Anton Halvorsen ◽  
Egil Vålandsmyr Herland ◽  
...  

AbstractPhysics-based Finite Element Methods models can be used to investigate the electrical conditions in submerged arc furnaces (SAFs). However, their explicit solution may be very demanding in terms of time and computational resources. This makes these models difficult to employ during control operations and in fast prototyping. To obviate these inconveniences, we developed metamodels that are grounded on the physics-based model. In this context, a metamodel is a surrogate of an original model obtained using statistical analysis tools to determine approximate input–output relationships in a database of simulations from the original model. The metamodels for the SAF electrical conditions are shown to retain the same generalization capabilities as the original model while being computationally lightweight.


2013 ◽  
Vol 41 (2) ◽  
pp. 127-151
Author(s):  
Rudolf F. Bauer

ABSTRACT The benefits of a tire's equilibrium profile have been suggested by several authors in the published literature, and mathematical procedures were developed that represented well the behavior of bias ply tires. However, for modern belted radial ply tires, and particularly those with a lower aspect ratio, the tire constructions are much more complicated and pose new problems for a mathematical analysis. Solutions to these problems are presented in this paper, and for a modern radial touring tire the equilibrium profile was calculated together with the mold profile to produce such tires. Some construction modifications were then applied to these tires to render their profiles “nonequilibrium.” Finite element methods were used to analyze for stress concentrations and deformations within all tires that did or did not conform to equilibrium profiles. Finally, tires were built and tested to verify the predictions of these analyses. From the analysis of internal stresses and deformations on inflation and loading and from the actual tire tests, the superior durability of tires with an equilibrium profile was established, and hence it is concluded that an equilibrium profile is a beneficial property of modern belted radial ply tires.


1983 ◽  
Author(s):  
W. HABASHI ◽  
M. HAFEZ ◽  
P. KOTIUGA

Sign in / Sign up

Export Citation Format

Share Document