G2GML: Graph to Graph Mapping Language for Bridging RDF and Property Graphs

Author(s):  
Hirokazu Chiba ◽  
Ryota Yamanaka ◽  
Shota Matsumoto
EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
L Lowie ◽  
E Van Nieuwenhuyse ◽  
J Sanchez ◽  
A Panfilov ◽  
S Knecht ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Entrainment mapping (EM) is an important tool to determine the mechanism of complex reentrant atrial tachycardias (ATs), mostly to distinguish dominant from bystander reentrant loops. However, entrainment maneuvers are challenging, time consuming and risk to end the tachycardia.  Purpose Recently, we developed a novel method Directed Graph Mapping (DGM), using concepts of network theory, allowing to automatically determine AT reentry loops from the local activation times (LAT) of any clinical mapping system. DGM showed good performance: it correctly finds ablation target (100 % success rate) on simple AT cases and could automatically determine reentry loops confirmed by the expert electrophysiologist with EM in complex AT cases. Out of 32 single loop cases, 62.5 % was identified correctly with automated DGM and out of 6 true double loop cases, 83.3 %. Lower performance for single reentry complex cases compared to EM was mainly because DGM could not distinguish the dominant loop from additional bystander loops found by DGM. Hence, the purpose of this work was to develop additional algorithms which in case of multiple found DGM loops could automatically find the dominant loop and compare it with the results of EM. Methods We performed multiple  simulations of various types of double loop reentry on a patient specific model of the left atrium. Based on a clinical case, double loops were simulated around a scar at the anterior wall (localized reentry) and the mitral valve (MV). LAT maps were determined similar as in the clinic. By varying the size of the scar in multiple steps, we obtained a transition from a regime of a dominant loop around the scar (small scar), to a true double loop and further to a regime of a dominant loop around the MV (large scar). We developed a novel DGM algorithm to determine the dominant loop from the region of collision (ROC) found from the vector field of the wavefront graph.   The developed method was also tested on 8 clinical cases of double loop ATs with EM measurements. Results Our algorithm found the location of the ROC and determined the correct dominant loop in 100% of the simulated data.  We tested this on 8 clinical cases of AT, and accuracy of the method was 75 %. Conclusions Determining the ROC in case of multiple loops in AT could correctly determine the dominant versus bystander loop, leading to the correct ablation target, without the need for further EM.


2019 ◽  
Author(s):  
Nele Vandersickel ◽  
Enid Van Nieuwenhuyse ◽  
Nico Van Cleemput ◽  
Jan Goedgebeur ◽  
Milad El Haddad ◽  
...  

AbstractNetworks provide a powerful methodology with applications in a variety of biological, technological and social systems such as analysis of brain data, social networks, internet search engine algorithms, etc. To date, directed networks have not yet been applied to characterize the excitation of the human heart. In clinical practice, cardiac excitation is recorded by multiple discrete electrodes. During (normal) sinus rhythm or during cardiac arrhythmias, successive excitation connects neighboring electrodes, resulting in their own unique directed network. This in theory makes it a perfect fit for directed network analysis. In this study, we applied directed networks to the heart in order to describe and characterize cardiac arrhythmias. Proofof-principle was established using in-silico and clinical data. We demonstrated that tools used in network theory analysis allow to determine the mechanism and location of certain cardiac arrhythmias. We show that the robustness of this approach can potentially exceed the existing state-of-the art methodology used in clinics. Furthermore, implementation of these techniques in daily practice can improve accuracy and speed of cardiac arrhythmia analysis. It may also provide novel insights in arrhythmias that are still incompletely understood.


2006 ◽  
Vol 211 (2) ◽  
pp. 405-423 ◽  
Author(s):  
Xueqiang Liu ◽  
Ning Qin ◽  
Hao Xia

2009 ◽  
Vol 23 (03) ◽  
pp. 525-528 ◽  
Author(s):  
TIANHANG XIAO ◽  
HAISONG ANG

As numerical simulation of unsteady flows due to moving boundaries such as flexible flapping-wings is difficult by conventional approaches, an effective strategy which combines mesh deformation based on Delaunay graph mapping and unstructured overset grids is proposed in this paper. A Delaunay graph is generated for each body-fitted grid cluster which overlaps or is embedded within an off-body background grid cluster. At each time step, the graph moves according to the wing's motion and deformation, and the grids move to new positions according to a one-to-one mapping between the graph and the grid. Then, intergrid-boundary definition is implemented automatically for computation.


Sign in / Sign up

Export Citation Format

Share Document