Prediction of Technology Trend of Educational Robot Industry Based on Patent Map Analysis

Author(s):  
Yue Wu ◽  
Jian Fang
2019 ◽  
Vol 73 (10) ◽  
pp. 944-948
Author(s):  
Jari Almi ◽  
Samuli Lehtonen ◽  
Kenichi Ishihara

2017 ◽  
Author(s):  
Natalia Sizochenko ◽  
Alicja Mikolajczyk ◽  
Karolina Jagiello ◽  
Tomasz Puzyn ◽  
Jerzy Leszczynski ◽  
...  

Application of predictive modeling approaches is able solve the problem of the missing data. There are a lot of studies that investigate the effects of missing values on qualitative or quantitative modeling, but only few publications have been<br>discussing it in case of applications to nanotechnology related data. Current project aimed at the development of multi-nano-read-across modeling technique that helps in predicting the toxicity of different species: bacteria, algae, protozoa, and mammalian cell lines. In this study, the experimental toxicity for 184 metal- and silica oxides (30 unique chemical types) nanoparticles from 15 experimental datasets was analyzed. A hybrid quantitative multi-nano-read-across approach that combines interspecies correlation analysis and self-organizing map analysis was developed. At the first step, hidden patterns of toxicity among the nanoparticles were identified using a combination of methods. Then the developed model that based on categorization of metal oxide nanoparticles’ toxicity outcomes was evaluated by means of combination of supervised and unsupervised machine learning techniques to find underlying factors responsible for toxicity.


2017 ◽  
Author(s):  
Natalia Sizochenko ◽  
Alicja Mikolajczyk ◽  
Karolina Jagiello ◽  
Tomasz Puzyn ◽  
Jerzy Leszczynski ◽  
...  

Application of predictive modeling approaches is able solve the problem of the missing data. There are a lot of studies that investigate the effects of missing values on qualitative or quantitative modeling, but only few publications have been<br>discussing it in case of applications to nanotechnology related data. Current project aimed at the development of multi-nano-read-across modeling technique that helps in predicting the toxicity of different species: bacteria, algae, protozoa, and mammalian cell lines. In this study, the experimental toxicity for 184 metal- and silica oxides (30 unique chemical types) nanoparticles from 15 experimental datasets was analyzed. A hybrid quantitative multi-nano-read-across approach that combines interspecies correlation analysis and self-organizing map analysis was developed. At the first step, hidden patterns of toxicity among the nanoparticles were identified using a combination of methods. Then the developed model that based on categorization of metal oxide nanoparticles’ toxicity outcomes was evaluated by means of combination of supervised and unsupervised machine learning techniques to find underlying factors responsible for toxicity.


Author(s):  
Camelia Hora ◽  
Stefan Eichenberger

Abstract Due to the development of smaller and denser manufacturing processes most of the hardware localization techniques cannot keep up satisfactorily with the technology trend. There is an increased need in precise and accurate software based diagnosis tools to help identify the fault location. This paper describes the software based fault diagnosis method used within Philips, focusing on the features developed to increase its accuracy.


Sign in / Sign up

Export Citation Format

Share Document