$$\mathsf{P}^{3}$$: A Profiler Suite for Parallel Applications on the Java Virtual Machine

Author(s):  
Andrea Rosà ◽  
Walter Binder
2003 ◽  
Vol 13 (01) ◽  
pp. 53-64 ◽  
Author(s):  
ERIC GAMESS

In this paper, we address the goal of executing Java parallel applications in a group of nodes of a Beowulf cluster transparently chosen by a metacomputing system oriented to efficient execution of Java bytecode, with support for scientific computing. To this end, we extend the Java virtual machine by providing a message passing interface and quick access to distributed high performance resources. Also, we introduce the execution of parallel linear algebra methods for large objects from sequential Java applications by invoking SPLAM, our parallel linear algebra package.


2014 ◽  
Vol 11 (1) ◽  
pp. 47-68 ◽  
Author(s):  
Patricia Conde ◽  
Francisco Ortin

Java 7 has included the new invokedynamic opcode in the Java virtual machine. This new instruction allows the user to define method linkage at runtime. Once the link is established, the virtual machine performs its common optimizations, providing better runtime performance than reflection. However, this feature has not been offered at the abstraction level of the Java programming language. Since the functionality of the new opcode is not provided as a library, the existing languages in the Java platform can only use it at the assembly level. For this reason, we have developed the JINDY library that offers invokedynamic to any programming language in the Java platform. JINDY supports three modes of use, establishing a trade-off between runtime performance and flexibility. A runtime performance and memory consumption evaluation is presented. We analyze the efficiency of JINDY compared to reflection, the MethodHandle class in Java 7 and the Dynalink library. The memory and performance costs compared to the invokedynamic opcode are also measured.


Sign in / Sign up

Export Citation Format

Share Document