Mixed-Case Community Detection Problem in Social Networks

Author(s):  
Yapu Zhang ◽  
Jianxiong Guo ◽  
Wenguo Yang
Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 443
Author(s):  
Inmaculada Gutiérrez ◽  
Juan Antonio Guevara ◽  
Daniel Gómez ◽  
Javier Castro ◽  
Rosa Espínola

In this paper, we address one of the most important topics in the field of Social Networks Analysis: the community detection problem with additional information. That additional information is modeled by a fuzzy measure that represents the risk of polarization. Particularly, we are interested in dealing with the problem of taking into account the polarization of nodes in the community detection problem. Adding this type of information to the community detection problem makes it more realistic, as a community is more likely to be defined if the corresponding elements are willing to maintain a peaceful dialogue. The polarization capacity is modeled by a fuzzy measure based on the JDJpol measure of polarization related to two poles. We also present an efficient algorithm for finding groups whose elements are no polarized. Hereafter, we work in a real case. It is a network obtained from Twitter, concerning the political position against the Spanish government taken by several influential users. We analyze how the partitions obtained change when some additional information related to how polarized that society is, is added to the problem.


Author(s):  
Amany A. Naem ◽  
Neveen I. Ghali

Antlion Optimization (ALO) is one of the latest population based optimization methods that proved its good performance in a variety of applications. The ALO algorithm copies the hunting mechanism of antlions to ants in nature. Community detection in social networks is conclusive to understanding the concepts of the networks. Identifying network communities can be viewed as a problem of clustering a set of nodes into communities. k-median clustering is one of the popular techniques that has been applied in clustering. The problem of clustering network can be formalized as an optimization problem where a qualitatively objective function that captures the intuition of a cluster as a set of nodes with better in ternal connectivity than external connectivity is selected to be optimized. In this paper, a mixture antlion optimization and k-median for solving the community detection problem is proposed and named as K-median Modularity ALO. Experimental results which are applied on real life networks show the ability of the mixture antlion optimization and k-median to detect successfully an optimized community structure based on putting the modularity as an objective function.


Author(s):  
Khaled Ahmed ◽  
Aboul Ella Hassanien ◽  
Ehab Ezzat

Complex social networks analysis is an important research trend, which basically based on community detection. Community detection is the process of dividing the complex social network into a dynamic number of clusters based on their edges connectivity. This paper presents an efficient Elephant Swarm Optimization Algorithm for community detection problem (EESO) as an optimization approach. EESO can define dynamically the number of communities within complex social network. Experimental results are proved that EESO can handle the community detection problem and define the structure of complex networks with high accuracy and quality measures of NMI and modularity over four popular benchmarks such as Zachary Karate Club, Bottlenose Dolphin, American college football and Facebook. EESO presents high promised results against eight community detection algorithms such as discrete krill herd algorithm, discrete Bat algorithm, artificial fish swarm algorithm, fast greedy, label propagation, walktrap, Multilevel and InfoMap.


Electronics ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 23
Author(s):  
Sergio Pérez-Peló ◽  
Jesús Sánchez-Oro ◽  
Raúl Martín-Santamaría ◽  
Abraham Duarte

Community detection in social networks is becoming one of the key tasks in social network analysis, since it helps with analyzing groups of users with similar interests. As a consequence, it is possible to detect radicalism or even reduce the size of the data to be analyzed, among other applications. This paper presents a metaheuristic approach based on Greedy Randomized Adaptive Search Procedure (GRASP) methodology for detecting communities in social networks. The community detection problem is modeled as an optimization problem, where the objective function to be optimized is the modularity of the network, a well-known metric in this scientific field. The results obtained outperform classical methods of community detection over a set of real-life instances with respect to the quality of the communities detected.


Author(s):  
Inmaculada Gutiérrez García-Pardo ◽  
Juan Antonio Guevara Gil ◽  
Daniel Gómez González ◽  
Javier Castro Cantalejo ◽  
Rosa Espínola Vílchez

In this paper we address one of the most important topics in the field of Social Networks Analysis: the community detection problem with additional information. That additional information is modeled by a fuzzy measure that represents the possibility of polarization. Particularly, we are interested in dealing with the problem of taking into account the Polarization of nodes in the community detection problem. Adding this type of information to the community detection problem makes it more realistic, as a community is more probably to be defined if the corresponding elements are willing to maintain a peaceful dialogue. The polarization capacity is modeled by a fuzzy measure based on the JDJpol measure of polarization related to two poles. We also present an efficient algorithm for finding groups whose elements are no polarized. Hereafter, we work in a real case. It is a network obtained from Twitter, concerning the political position against the Spanish government taken by several influential users. We analyze how the partitions obtained change when some additional information related to how polarized that society is, is added to the problem.


Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 139 ◽  
Author(s):  
Vincenzo Cutello ◽  
Georgia Fargetta ◽  
Mario Pavone ◽  
Rocco A. Scollo

Community detection is one of the most challenging and interesting problems in many research areas. Being able to detect highly linked communities in a network can lead to many benefits, such as understanding relationships between entities or interactions between biological genes, for instance. Two different immunological algorithms have been designed for this problem, called Opt-IA and Hybrid-IA, respectively. The main difference between the two algorithms is the search strategy and related immunological operators developed: the first carries out a random search together with purely stochastic operators; the last one is instead based on a deterministic Local Search that tries to refine and improve the current solutions discovered. The robustness of Opt-IA and Hybrid-IA has been assessed on several real social networks. These same networks have also been considered for comparing both algorithms with other seven different metaheuristics and the well-known greedy optimization Louvain algorithm. The experimental analysis conducted proves that Opt-IA and Hybrid-IA are reliable optimization methods for community detection, outperforming all compared algorithms.


Sign in / Sign up

Export Citation Format

Share Document