Forensic Source Identification of OSN Compressed Images

Author(s):  
Sobhan Mondal ◽  
Deependra Pushkar ◽  
Mrinali Kumari ◽  
Ruchira Naskar
2021 ◽  
Author(s):  
Christopher Thurman ◽  
Nikolas S. Zawodny ◽  
Nicole A. Pettingill ◽  
Leonard V. Lopes ◽  
James D. Baeder

2019 ◽  
Vol 67 (3) ◽  
pp. 219-227
Author(s):  
Youhong Xiao ◽  
Qingqing Song ◽  
Shaowei Li ◽  
Guoxue Lv ◽  
Zhenlin Ji

In noise source identification based on the inverse boundary element method (IBEM), the boundary vibration velocity is predicted based on the field pressure through a transfer matrix of the vibration velocity and field pressure established on the Helmholtz integral equation. Because the matrix is often ill-posed, it needs to be regularized before reconstructing the vibration velocity. Two regularization methods and two methods of selecting the regularization parameter are investigated through the simulation analysis of a pulsating sphere. The result of transfer matrix regularization is further verified through the reconstruction of the vibration of an aluminum plate. Additionally, to reduce the large errors at some frequencies in the reconstruction result, increasing the number of measuring points is more effective than reducing the distance between the measurement plane and the sound source.


2021 ◽  
pp. 1-11
Author(s):  
Kusan Biswas

In this paper, we propose a frequency domain data hiding method for the JPEG compressed images. The proposed method embeds data in the DCT coefficients of the selected 8 × 8 blocks. According to the theories of Human Visual Systems  (HVS), human vision is less sensitive to perturbation of pixel values in the uneven areas of the image. In this paper we propose a Singular Value Decomposition based image roughness measure (SVD-IRM) using which we select the coarse 8 × 8 blocks as data embedding destinations. Moreover, to make the embedded data more robust against re-compression attack and error due to transmission over noisy channels, we employ Turbo error correcting codes. The actual data embedding is done using a proposed variant of matrix encoding that is capable of embedding three bits by modifying only one bit in block of seven carrier features. We have carried out experiments to validate the performance and it is found that the proposed method achieves better payload capacity and visual quality and is more robust than some of the recent state-of-the-art methods proposed in the literature.


Sign in / Sign up

Export Citation Format

Share Document