Segmentation-Based 3D Point Cloud Classification on a Large-Scale and Indoor Semantic Segmentation Dataset

Author(s):  
Ali Saglam ◽  
Nurdan Akhan Baykan
2020 ◽  
Vol 12 (16) ◽  
pp. 2598
Author(s):  
Simone Teruggi ◽  
Eleonora Grilli ◽  
Michele Russo ◽  
Francesco Fassi ◽  
Fabio Remondino

The recent years saw an extensive use of 3D point cloud data for heritage documentation, valorisation and visualisation. Although rich in metric quality, these 3D data lack structured information such as semantics and hierarchy between parts. In this context, the introduction of point cloud classification methods can play an essential role for better data usage, model definition, analysis and conservation. The paper aims to extend a machine learning (ML) classification method with a multi-level and multi-resolution (MLMR) approach. The proposed MLMR approach improves the learning process and optimises 3D classification results through a hierarchical concept. The MLMR procedure is tested and evaluated on two large-scale and complex datasets: the Pomposa Abbey (Italy) and the Milan Cathedral (Italy). Classification results show the reliability and replicability of the developed method, allowing the identification of the necessary architectural classes at each geometric resolution.


2021 ◽  
pp. 573-581
Author(s):  
Sylvain Chabanet ◽  
Valentin Chazelle ◽  
Philippe Thomas ◽  
Hind Bril El-Haouzi

Author(s):  
Wenju Wang ◽  
Tao Wang ◽  
Yu Cai

AbstractClassifying 3D point clouds is an important and challenging task in computer vision. Currently, classification methods using multiple views lose characteristic or detail information during the representation or processing of views. For this reason, we propose a multi-view attention-convolution pooling network framework for 3D point cloud classification tasks. This framework uses Res2Net to extract the features from multiple 2D views. Our attention-convolution pooling method finds more useful information in the input data related to the current output, effectively solving the problem of feature information loss caused by feature representation and the detail information loss during dimensionality reduction. Finally, we obtain the probability distribution of the model to be classified using a full connection layer and the softmax function. The experimental results show that our framework achieves higher classification accuracy and better performance than other contemporary methods using the ModelNet40 dataset.


Sign in / Sign up

Export Citation Format

Share Document