cloud classification
Recently Published Documents


TOTAL DOCUMENTS

380
(FIVE YEARS 162)

H-INDEX

31
(FIVE YEARS 6)

Quaternary ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Matthew D. Howland ◽  
Anthony Tamberino ◽  
Ioannis Liritzis ◽  
Thomas E. Levy

This paper tests the suitability of automated point cloud classification tools provided by the popular image-based modeling (IBM) software package Agisoft Metashape for the generation of digital terrain models (DTMs) at moderately-vegetated archaeological sites. DTMs are often required for various forms of archaeological mapping and analysis. The suite of tools provided by Agisoft are relatively user-friendly as compared to many point cloud classification algorithms and do not require the use of additional software. Based on a case study from the Mycenaean site of Kastrouli, Greece, the mostly-automated, geometric classification tool “Classify Ground Points” provides the best results and produces a quality DTM that is sufficient for mapping and analysis. Each of the methods tested in this paper can likely be improved through manual editing of point cloud classification.


2022 ◽  
Vol 12 (1) ◽  
pp. 483
Author(s):  
Long Hoang ◽  
Suk-Hwan Lee ◽  
Eung-Joo Lee ◽  
Ki-Ryong Kwon

Light Detection and Ranging (LiDAR), which applies light in the formation of a pulsed laser to estimate the distance between the LiDAR sensor and objects, is an effective remote sensing technology. Many applications use LiDAR including autonomous vehicles, robotics, and virtual and augmented reality (VR/AR). The 3D point cloud classification is now a hot research topic with the evolution of LiDAR technology. This research aims to provide a high performance and compatible real-world data method for 3D point cloud classification. More specifically, we introduce a novel framework for 3D point cloud classification, namely, GSV-NET, which uses Gaussian Supervector and enhancing region representation. GSV-NET extracts and combines both global and regional features of the 3D point cloud to further enhance the information of the point cloud features for the 3D point cloud classification. Firstly, we input the Gaussian Supervector description into a 3D wide-inception convolution neural network (CNN) structure to define the global feature. Secondly, we convert the regions of the 3D point cloud into color representation and capture region features with a 2D wide-inception network. These extracted features are inputs of a 1D CNN architecture. We evaluate the proposed framework on the point cloud dataset: ModelNet and the LiDAR dataset: Sydney. The ModelNet dataset was developed by Princeton University (New Jersey, United States), while the Sydney dataset was created by the University of Sydney (Sydney, Australia). Based on our numerical results, our framework achieves more accuracy than the state-of-the-art approaches.


Author(s):  
An Deng ◽  
Yunchao Wu ◽  
Peng Zhang ◽  
Zhuheng Lu ◽  
Weiqing Li ◽  
...  

2021 ◽  
Vol 151 ◽  
pp. 180-186
Author(s):  
Ruibin Gu ◽  
Qiuxia Wu ◽  
Wing W.Y. Ng ◽  
Hongbin Xu ◽  
Zhiyong Wang

Author(s):  
Wenju Wang ◽  
Tao Wang ◽  
Yu Cai

AbstractClassifying 3D point clouds is an important and challenging task in computer vision. Currently, classification methods using multiple views lose characteristic or detail information during the representation or processing of views. For this reason, we propose a multi-view attention-convolution pooling network framework for 3D point cloud classification tasks. This framework uses Res2Net to extract the features from multiple 2D views. Our attention-convolution pooling method finds more useful information in the input data related to the current output, effectively solving the problem of feature information loss caused by feature representation and the detail information loss during dimensionality reduction. Finally, we obtain the probability distribution of the model to be classified using a full connection layer and the softmax function. The experimental results show that our framework achieves higher classification accuracy and better performance than other contemporary methods using the ModelNet40 dataset.


2021 ◽  
Vol 13 (21) ◽  
pp. 4312
Author(s):  
Genping Zhao ◽  
Weiguang Zhang ◽  
Yeping Peng ◽  
Heng Wu ◽  
Zhuowei Wang ◽  
...  

Point cloud classification plays a significant role in Light Detection and Ranging (LiDAR) applications. However, most available multi-scale feature learning networks for large-scale 3D LiDAR point cloud classification tasks are time-consuming. In this paper, an efficient deep neural architecture denoted as Point Expanded Multi-scale Convolutional Network (PEMCNet) is developed to accurately classify the 3D LiDAR point cloud. Different from traditional networks for point cloud processing, PEMCNet includes successive Point Expanded Grouping (PEG) units and Absolute and Relative Spatial Embedding (ARSE) units for representative point feature learning. The PEG unit enables us to progressively increase the receptive field for each observed point and aggregate the feature of a point cloud at different scales but without increasing computation. The ARSE unit following the PEG unit furthermore realizes representative encoding of points relationship, which effectively preserves the geometric details between points. We evaluate our method on both public datasets (the Urban Semantic 3D (US3D) dataset and Semantic3D benchmark dataset) and our new collected Unmanned Aerial Vehicle (UAV) based LiDAR point cloud data of the campus of Guangdong University of Technology. In comparison with four available state-of-the-art methods, our methods ranked first place regarding both efficiency and accuracy. It was observed on the public datasets that with a 2% increase in classification accuracy, over 26% improvement of efficiency was achieved at the same time compared to the second efficient method. Its potential value is also tested on the newly collected point cloud data with over 91% of classification accuracy and 154 ms of processing time.


Sign in / Sign up

Export Citation Format

Share Document