Automated Breast Cancer Diagnosis Based on Neural Network Algorithms

Author(s):  
Kamran Alam ◽  
Lalita Sharma ◽  
Namarta Chopra
2016 ◽  
pp. 203-214 ◽  
Author(s):  
Ahmad Al-Khasawneh

Breast cancer is the second leading cause of cancer deaths in women worldwide. Early diagnosis of this illness can increase the chances of long-term survival of cancerous patients. To help in this aid, computerized breast cancer diagnosis systems are being developed. Machine learning algorithms and data mining techniques play a central role in the diagnosis. This paper describes neural network based approaches to breast cancer diagnosis. The aim of this research is to investigate and compare the performance of supervised and unsupervised neural networks in diagnosing breast cancer. A multilayer perceptron has been implemented as a supervised neural network and a self-organizing map as an unsupervised one. Both models were simulated using a variety of parameters and tested using several combinations of those parameters in independent experiments. It was concluded that the multilayer perceptron neural network outperforms Kohonen's self-organizing maps in diagnosing breast cancer even with small data sets.


Author(s):  
Ahmad Al-Khasawneh

Breast cancer is the second leading cause of cancer deaths in women worldwide. Early diagnosis of this illness can increase the chances of long-term survival of cancerous patients. To help in this aid, computerized breast cancer diagnosis systems are being developed. Machine learning algorithms and data mining techniques play a central role in the diagnosis. This paper describes neural network based approaches to breast cancer diagnosis. The aim of this research is to investigate and compare the performance of supervised and unsupervised neural networks in diagnosing breast cancer. A multilayer perceptron has been implemented as a supervised neural network and a self-organizing map as an unsupervised one. Both models were simulated using a variety of parameters and tested using several combinations of those parameters in independent experiments. It was concluded that the multilayer perceptron neural network outperforms Kohonen's self-organizing maps in diagnosing breast cancer even with small data sets.


Author(s):  
Gabriela Barbosa Guedes Pereira ◽  
Lucas Pereira Fernandes ◽  
Jose Mauricio Ramos de Souza Neto ◽  
Helon David de Macedo Braz ◽  
Leandro da Silva Sauer

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Lian Zou ◽  
Shaode Yu ◽  
Tiebao Meng ◽  
Zhicheng Zhang ◽  
Xiaokun Liang ◽  
...  

This study reviews the technique of convolutional neural network (CNN) applied in a specific field of mammographic breast cancer diagnosis (MBCD). It aims to provide several clues on how to use CNN for related tasks. MBCD is a long-standing problem, and massive computer-aided diagnosis models have been proposed. The models of CNN-based MBCD can be broadly categorized into three groups. One is to design shallow or to modify existing models to decrease the time cost as well as the number of instances for training; another is to make the best use of a pretrained CNN by transfer learning and fine-tuning; the third is to take advantage of CNN models for feature extraction, and the differentiation of malignant lesions from benign ones is fulfilled by using machine learning classifiers. This study enrolls peer-reviewed journal publications and presents technical details and pros and cons of each model. Furthermore, the findings, challenges and limitations are summarized and some clues on the future work are also given. Conclusively, CNN-based MBCD is at its early stage, and there is still a long way ahead in achieving the ultimate goal of using deep learning tools to facilitate clinical practice. This review benefits scientific researchers, industrial engineers, and those who are devoted to intelligent cancer diagnosis.


Sign in / Sign up

Export Citation Format

Share Document