Approximation Algorithms for the Balanced Optimization Splicing Problem in Undirected Graph

Author(s):  
Yongsong Wen
2011 ◽  
Vol 474-476 ◽  
pp. 924-927 ◽  
Author(s):  
Xiao Xin

Given an undirected graph G=(V, E) with real nonnegative weights and + or – labels on its edges, the correlation clustering problem is to partition the vertices of G into clusters to minimize the total weight of cut + edges and uncut – edges. This problem is APX-hard and has been intensively studied mainly from the viewpoint of polynomial time approximation algorithms. By way of contrast, a fixed-parameter tractable algorithm is presented that takes treewidth as the parameter, with a running time that is linear in the number of vertices of G.


2007 ◽  
Vol 18 (02) ◽  
pp. 217-226 ◽  
Author(s):  
ANDERS DESSMARK ◽  
JESPER JANSSON ◽  
ANDRZEJ LINGAS ◽  
EVA-MARTA LUNDELL ◽  
MIA PERSSON

We consider the following clustering problems: given an undirected graph, partition its vertices into disjoint clusters such that each cluster forms a clique and the number of edges within the clusters is maximized (Max-ECP), or the number of edges between clusters is minimized (Min-ECP). These problems arise naturally in the DNA clone classification. We investigate the hardness of finding such partitions and provide approximation algorithms. Further, we show that greedy strategies yield constant factor approximations for graph classes for which maximum cliques can be found efficiently.


2019 ◽  
Vol 35 (1) ◽  
pp. 57-68
Author(s):  
Nguyen Thi Phuong ◽  
Tran Vinh Duc ◽  
Le Cong Thanh

The longest path problem is known to be NP-hard. Moreover, they cannot be approximated within a constant ratio, unless ${\rm P=NP}$. The best known polynomial time approximation algorithms for this problem essentially find a path of length that is the logarithm of the optimum.In this paper we investigate the performance of an approximation algorithm for this problem in almost every case. We show that a simple algorithm, based on depth-first search, finds on almost every undirected graph $G=(V,E)$ a path of length more than $|V|-3\sqrt{|V| \log |V|}$ and so has performance ratio less than $1+4\sqrt{\log |V|/|V|}$.\


2019 ◽  
Vol 53 (5) ◽  
pp. 1763-1773
Author(s):  
Meziane Aider ◽  
Lamia Aoudia ◽  
Mourad Baïou ◽  
A. Ridha Mahjoub ◽  
Viet Hung Nguyen

Let G = (V, E) be an undirected graph where the edges in E have non-negative weights. A star in G is either a single node of G or a subgraph of G where all the edges share one common end-node. A star forest is a collection of vertex-disjoint stars in G. The weight of a star forest is the sum of the weights of its edges. This paper deals with the problem of finding a Maximum Weight Spanning Star Forest (MWSFP) in G. This problem is NP-hard but can be solved in polynomial time when G is a cactus [Nguyen, Discrete Math. Algorithms App. 7 (2015) 1550018]. In this paper, we present a polyhedral investigation of the MWSFP. More precisely, we study the facial structure of the star forest polytope, denoted by SFP(G), which is the convex hull of the incidence vectors of the star forests of G. First, we prove several basic properties of SFP(G) and propose an integer programming formulation for MWSFP. Then, we give a class of facet-defining inequalities, called M-tree inequalities, for SFP(G). We show that for the case when G is a tree, the M-tree and the nonnegativity inequalities give a complete characterization of SFP(G). Finally, based on the description of the dominating set polytope on cycles given by Bouchakour et al. [Eur. J. Combin. 29 (2008) 652–661], we give a complete linear description of SFP(G) when G is a cycle.


Author(s):  
Kai Han ◽  
Shuang Cui ◽  
Tianshuai Zhu ◽  
Enpei Zhang ◽  
Benwei Wu ◽  
...  

Data summarization, i.e., selecting representative subsets of manageable size out of massive data, is often modeled as a submodular optimization problem. Although there exist extensive algorithms for submodular optimization, many of them incur large computational overheads and hence are not suitable for mining big data. In this work, we consider the fundamental problem of (non-monotone) submodular function maximization with a knapsack constraint, and propose simple yet effective and efficient algorithms for it. Specifically, we propose a deterministic algorithm with approximation ratio 6 and a randomized algorithm with approximation ratio 4, and show that both of them can be accelerated to achieve nearly linear running time at the cost of weakening the approximation ratio by an additive factor of ε. We then consider a more restrictive setting without full access to the whole dataset, and propose streaming algorithms with approximation ratios of 8+ε and 6+ε that make one pass and two passes over the data stream, respectively. As a by-product, we also propose a two-pass streaming algorithm with an approximation ratio of 2+ε when the considered submodular function is monotone. To the best of our knowledge, our algorithms achieve the best performance bounds compared to the state-of-the-art approximation algorithms with efficient implementation for the same problem. Finally, we evaluate our algorithms in two concrete submodular data summarization applications for revenue maximization in social networks and image summarization, and the empirical results show that our algorithms outperform the existing ones in terms of both effectiveness and efficiency.


2020 ◽  
Vol 8 (1) ◽  
pp. 1-28
Author(s):  
Siddharth Barman ◽  
Sanath Kumar Krishnamurthy

Author(s):  
Jing Tang ◽  
Xueyan Tang ◽  
Andrew Lim ◽  
Kai Han ◽  
Chongshou Li ◽  
...  

Monotone submodular maximization with a knapsack constraint is NP-hard. Various approximation algorithms have been devised to address this optimization problem. In this paper, we revisit the widely known modified greedy algorithm. First, we show that this algorithm can achieve an approximation factor of 0.405, which significantly improves the known factors of 0.357 given by Wolsey and (1-1/e)/2\approx 0.316 given by Khuller et al. More importantly, our analysis closes a gap in Khuller et al.'s proof for the extensively mentioned approximation factor of (1-1/\sqrte )\approx 0.393 in the literature to clarify a long-standing misconception on this issue. Second, we enhance the modified greedy algorithm to derive a data-dependent upper bound on the optimum. We empirically demonstrate the tightness of our upper bound with a real-world application. The bound enables us to obtain a data-dependent ratio typically much higher than 0.405 between the solution value of the modified greedy algorithm and the optimum. It can also be used to significantly improve the efficiency of algorithms such as branch and bound.


Author(s):  
Xiaoyan Zhang ◽  
Donglei Du ◽  
Gregory Gutin ◽  
Qiaoxia Ming ◽  
Jian Sun

Sign in / Sign up

Export Citation Format

Share Document