scholarly journals On the Performance of a Simple Approximation Algorithm for the Longest Path Problem

2019 ◽  
Vol 35 (1) ◽  
pp. 57-68
Author(s):  
Nguyen Thi Phuong ◽  
Tran Vinh Duc ◽  
Le Cong Thanh

The longest path problem is known to be NP-hard. Moreover, they cannot be approximated within a constant ratio, unless ${\rm P=NP}$. The best known polynomial time approximation algorithms for this problem essentially find a path of length that is the logarithm of the optimum.In this paper we investigate the performance of an approximation algorithm for this problem in almost every case. We show that a simple algorithm, based on depth-first search, finds on almost every undirected graph $G=(V,E)$ a path of length more than $|V|-3\sqrt{|V| \log |V|}$ and so has performance ratio less than $1+4\sqrt{\log |V|/|V|}$.\

2011 ◽  
Vol 474-476 ◽  
pp. 924-927 ◽  
Author(s):  
Xiao Xin

Given an undirected graph G=(V, E) with real nonnegative weights and + or – labels on its edges, the correlation clustering problem is to partition the vertices of G into clusters to minimize the total weight of cut + edges and uncut – edges. This problem is APX-hard and has been intensively studied mainly from the viewpoint of polynomial time approximation algorithms. By way of contrast, a fixed-parameter tractable algorithm is presented that takes treewidth as the parameter, with a running time that is linear in the number of vertices of G.


2002 ◽  
Vol 13 (04) ◽  
pp. 613-627 ◽  
Author(s):  
RENAUD LEPÈRE ◽  
DENIS TRYSTRAM ◽  
GERHARD J. WOEGINGER

This work presents approximation algorithms for scheduling the tasks of a parallel application that are subject to precedence constraints. The considered tasks are malleable which means that they may be executed on a varying number of processors in parallel. The considered objective criterion is the makespan, i.e., the largest task completion time. We demonstrate a close relationship between this scheduling problem and one of its subproblems, the allotment problem. By exploiting this relationship, we design a polynomial time approximation algorithm with performance guarantee arbitrarily close to [Formula: see text] for the special case of series parallel precedence constraints and for the special case of precedence constraints of bounded width. These special cases cover the important situation of tree structured precedence constraints. For arbitrary precedence constraints, we give a polynomial time approximation algorithm with performance guarantee [Formula: see text].


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
M. Bouznif ◽  
R. Giroudeau

We investigate complexity and approximation results on a processor networks where the communication delay depends on the distance between the processors performing tasks. We then prove that there is no heuristic with a performance guarantee smaller than 4/3 for makespan minimization for precedence graph on a large class of processor networks like hypercube, grid, torus, and so forth, with a fixed diameter . We extend complexity results when the precedence graph is a bipartite graph. We also design an efficient polynomial-time -approximation algorithm for the makespan minimization on processor networks with diameter .


2013 ◽  
Vol 23 (06) ◽  
pp. 461-477 ◽  
Author(s):  
MINATI DE ◽  
GAUTAM K. DAS ◽  
PAZ CARMI ◽  
SUBHAS C. NANDY

In this paper, we consider constant factor approximation algorithms for a variant of the discrete piercing set problem for unit disks. Here a set of points P is given; the objective is to choose minimum number of points in P to pierce the unit disks centered at all the points in P. We first propose a very simple algorithm that produces 12-approximation result in O(n log n) time. Next, we improve the approximation factor to 4 and then to 3. The worst case running time of these algorithms are O(n8 log n) and O(n15 log n) respectively. Apart from the space required for storing the input, the extra work-space requirement for each of these algorithms is O(1). Finally, we propose a PTAS for the same problem. Given a positive integer k, it can produce a solution with performance ratio [Formula: see text] in nO(k) time.


Sign in / Sign up

Export Citation Format

Share Document