Ransomware Threat Detection: A Deep Learning Approach

2022 ◽  
pp. 253-269
Author(s):  
Kassidy Marsh ◽  
Hamed Haddadpajouh
2021 ◽  
Vol 11 (6) ◽  
pp. 7757-7762
Author(s):  
K. Aldriwish

Internet of Things (IoT) -based systems need to be up to date on cybersecurity threats. The security of IoT networks is challenged by software piracy and malware attacks, and much important information can be stolen and used for cybercrimes. This paper attempts to improve IoT cybersecurity by proposing a combined model based on deep learning to detect malware and software piracy across the IoT network. The malware’s model is based on Deep Convolutional Neural Networks (DCNNs). Apart from this, TensorFlow Deep Neural Networks (TFDNNs) are introduced to detect software piracy threats according to source code plagiarism. The investigation is conducted on the Google Code Jam (GCJ) dataset. The conducted experiments prove that the classification performance achieves high accuracy of about 98%.


2018 ◽  
Vol 6 (3) ◽  
pp. 122-126
Author(s):  
Mohammed Ibrahim Khan ◽  
◽  
Akansha Singh ◽  
Anand Handa ◽  
◽  
...  

2020 ◽  
Vol 17 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Riaz Ahmad ◽  
Saeeda Naz ◽  
Muhammad Afzal ◽  
Sheikh Rashid ◽  
Marcus Liwicki ◽  
...  

This paper presents a deep learning benchmark on a complex dataset known as KFUPM Handwritten Arabic TexT (KHATT). The KHATT data-set consists of complex patterns of handwritten Arabic text-lines. This paper contributes mainly in three aspects i.e., (1) pre-processing, (2) deep learning based approach, and (3) data-augmentation. The pre-processing step includes pruning of white extra spaces plus de-skewing the skewed text-lines. We deploy a deep learning approach based on Multi-Dimensional Long Short-Term Memory (MDLSTM) networks and Connectionist Temporal Classification (CTC). The MDLSTM has the advantage of scanning the Arabic text-lines in all directions (horizontal and vertical) to cover dots, diacritics, strokes and fine inflammation. The data-augmentation with a deep learning approach proves to achieve better and promising improvement in results by gaining 80.02% Character Recognition (CR) over 75.08% as baseline.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Sign in / Sign up

Export Citation Format

Share Document