Classification of Neurodegenerative Diseases Based on VGG 19 Deep Transfer Learning Architecture: A Deep Learning Approach

2020 ◽  
Vol 13 (4) ◽  
pp. 1972-1980
Author(s):  
Kirti Raj Bhatele
Author(s):  
Matt Ervin Mital ◽  
Rogelio Ruzcko Tobias ◽  
Herbert Villaruel ◽  
Jose Martin Maningo ◽  
Robert Kerwin Billones ◽  
...  

Author(s):  
Elene Firmeza Ohata ◽  
João Victor Souza das Chagas ◽  
Gabriel Maia Bezerra ◽  
Mohammad Mehedi Hassan ◽  
Victor Hugo Costa de Albuquerque ◽  
...  

Measurement ◽  
2021 ◽  
pp. 109953
Author(s):  
Adhiyaman Manickam ◽  
Jianmin Jiang ◽  
Yu Zhou ◽  
Abhinav Sagar ◽  
Rajkumar Soundrapandiyan ◽  
...  

2021 ◽  
Vol 128 ◽  
pp. 103785
Author(s):  
Yongqing Jiang ◽  
Dandan Pang ◽  
Chengdong Li

2021 ◽  
Author(s):  
Muhammad Sajid

Abstract Machine learning is proving its successes in all fields of life including medical, automotive, planning, engineering, etc. In the world of geoscience, ML showed impressive results in seismic fault interpretation, advance seismic attributes analysis, facies classification, and geobodies extraction such as channels, carbonates, and salt, etc. One of the challenges faced in geoscience is the availability of label data which is one of the most time-consuming requirements in supervised deep learning. In this paper, an advanced learning approach is proposed for geoscience where the machine observes the seismic interpretation activities and learns simultaneously as the interpretation progresses. Initial testing showed that through the proposed method along with transfer learning, machine learning performance is highly effective, and the machine accurately predicts features requiring minor post prediction filtering to be accepted as the optimal interpretation.


Sign in / Sign up

Export Citation Format

Share Document