Portfolio Optimization Model for Asset Allocation Problem Based on Alternative Risk Measures

Author(s):  
Anna Andreevna Malakhova ◽  
Elena Nikolaevna Sochneva ◽  
Svetlana Anatolyevna Yarkova ◽  
Anastasiya Vladimirovna Yarkova ◽  
Olga Valeryevna Starova ◽  
...  
2004 ◽  
Vol 6 (2) ◽  
pp. 31-48 ◽  
Author(s):  
Nagisa Akutsu ◽  
Masaaki Kijima ◽  
Katsuya Komoribayashi

2021 ◽  
Vol 14 (5) ◽  
pp. 201
Author(s):  
Yuan Hu ◽  
W. Brent Lindquist ◽  
Svetlozar T. Rachev

This paper investigates performance attribution measures as a basis for constraining portfolio optimization. We employ optimizations that minimize conditional value-at-risk and investigate two performance attributes, asset allocation (AA) and the selection effect (SE), as constraints on asset weights. The test portfolio consists of stocks from the Dow Jones Industrial Average index. Values for the performance attributes are established relative to two benchmarks, equi-weighted and price-weighted portfolios of the same stocks. Performance of the optimized portfolios is judged using comparisons of cumulative price and the risk-measures: maximum drawdown, Sharpe ratio, Sortino–Satchell ratio and Rachev ratio. The results suggest that achieving SE performance thresholds requires larger turnover values than that required for achieving comparable AA thresholds. The results also suggest a positive role in price and risk-measure performance for the imposition of constraints on AA and SE.


2002 ◽  
Vol 18 (2) ◽  
pp. 231-248 ◽  
Author(s):  
Shu-ping Chen ◽  
Chong Li ◽  
Sheng-hong Li ◽  
Xiong-wei Wu

1993 ◽  
Vol 45 (1) ◽  
pp. 205-220 ◽  
Author(s):  
Hiroshi Konno ◽  
Hiroshi Shirakawa ◽  
Hiroaki Yamazaki

2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Q. H. Zhai ◽  
T. Ye ◽  
M. X. Huang ◽  
S. L. Feng ◽  
H. Li

In the field of asset allocation, how to balance the returns of an investment portfolio and its fluctuations is the core issue. Capital asset pricing model, arbitrage pricing theory, and Fama–French three-factor model were used to quantify the price of individual stocks and portfolios. Based on the second-order stochastic dominance rule, the higher moments of return series, the Shannon entropy, and some other actual investment constraints, we construct a multiconstraint portfolio optimization model, aiming at comprehensively weighting the returns and risk of portfolios rather than blindly maximizing its returns. Furthermore, the whale optimization algorithm based on FTSE100 index data is used to optimize the above multiconstraint portfolio optimization model, which significantly improves the rate of return of the simple diversified buy-and-hold strategy or the FTSE100 index. Furthermore, extensive experiments validate the superiority of the whale optimization algorithm over the other four swarm intelligence optimization algorithms (gray wolf optimizer, fruit fly optimization algorithm, particle swarm optimization, and firefly algorithm) through various indicators of the results, especially under harsh constraints.


Risks ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 29 ◽  
Author(s):  
Andrea Rigamonti

Mean-variance portfolio optimization is more popular than optimization procedures that employ downside risk measures such as the semivariance, despite the latter being more in line with the preferences of a rational investor. We describe strengths and weaknesses of semivariance and how to minimize it for asset allocation decisions. We then apply this approach to a variety of simulated and real data and show that the traditional approach based on the variance generally outperforms it. The results hold even if the CVaR is used, because all downside risk measures are difficult to estimate. The popularity of variance as a measure of risk appears therefore to be rationally justified.


Sign in / Sign up

Export Citation Format

Share Document