On the Computational Complexity of Reaction Systems, Revisited

Author(s):  
Markus Holzer ◽  
Christian Rauch
Author(s):  
Roberto Barbuti ◽  
Anna Bernasconi ◽  
Roberta Gori ◽  
Paolo Milazzo

Abstract In reaction systems, preimages and nth ancestors are sets of reactants leading to the production of a target set of products in either 1 or n steps, respectively. Many computational problems on preimages and ancestors, such as finding all minimum-cardinality nth ancestors, computing their size or counting them, are intractable. In this paper, we characterize all nth ancestors using a Boolean formula that can be computed in polynomial time. Once simplified, this formula can be exploited to easily solve all preimage and ancestor problems. This allows us to directly relate the difficulty of ancestor problems to the cost of the simplification so that new insights into computational complexity investigations can be achieved. In particular, we focus on two problems: (i) deciding whether a preimage/nth ancestor exists and (ii) finding a preimage/nth ancestor of minimal size. Our approach is constructive, it aims at finding classes of reactions systems for which the ancestor problems can be solved in polynomial time, in exact or approximate way.


1992 ◽  
Vol 12 (4) ◽  
pp. 443-456 ◽  
Author(s):  
Chunhong Xie ◽  
Taiping He ◽  
Guohong Bai
Keyword(s):  

Author(s):  
Nico Potyka

Bipolar abstract argumentation frameworks allow modeling decision problems by defining pro and contra arguments and their relationships. In some popular bipolar frameworks, there is an inherent tendency to favor either attack or support relationships. However, for some applications, it seems sensible to treat attack and support equally. Roughly speaking, turning an attack edge into a support edge, should just invert its meaning. We look at a recently introduced bipolar argumentation semantics and two novel alternatives and discuss their semantical and computational properties. Interestingly, the two novel semantics correspond to stable semantics if no support relations are present and maintain the computational complexity of stable semantics in general bipolar frameworks.


Sign in / Sign up

Export Citation Format

Share Document