Performance Analysis of Beta-Type Stirling Cycle Refrigerator for Different Working Fluids

Author(s):  
Muluken Z. Getie ◽  
Francois Lanzetta ◽  
Sylvie Begot ◽  
Bimrew T. Admassu ◽  
Steve Djetel Gothe
Author(s):  
T. W. Bradshaw ◽  
J. Delderfield ◽  
S. T. Werrett ◽  
G. Davey

2019 ◽  
Vol 163 ◽  
pp. 114317 ◽  
Author(s):  
Yiqun Zhang ◽  
Chao Yu ◽  
Gensheng Li ◽  
Xiaofeng Guo ◽  
Gaosheng Wang ◽  
...  

Author(s):  
Maximilian Roedder ◽  
Matthias Neef ◽  
Christoph Laux ◽  
Klaus-P. Priebe

The organic Rankine cycle (ORC) is an established thermodynamic process that converts waste heat to electric energy. Due to the wide range of organic working fluids available the fluid selection adds an additional degree-of-freedom to the early design phase of an ORC process. Despite thermodynamic aspects such as the temperature level of the heat source, other technical, economic, and safety aspects have to be considered. For the fluid selection process in this paper, 22 criteria were identified in six main categories while distinguishing between elimination (EC) and tolerance criteria (TC). For an ORC design, the suggested method follows a practical engineering approach and can be used as a structured way to limit the number of interesting working fluids before starting a detailed performance analysis of the most promising candidates. For the first time, the selection process is applied to a two-stage reference cycle, which uses the waste heat of a large reciprocating engine for cogeneration power plants. It consists of a high temperature (HT) and a low temperature (LT) cycle in which the condensation heat of the HT cycle provides the heat input of the LT cycle. After the fluid selection process, the detailed thermodynamic cycle design is carried out with a thermodynamic design tool that also includes a database for organic working fluids. The investigated ORC cycle shows a net thermal efficiency of about 17.4% in the HT cycle with toluene as the working fluid and 6.2% in LT cycle with isobutane as the working fluid. The electric efficiency of the cogeneration plant increases from 40.4% to 46.97% with the both stages of the two-stage ORC in operation.


2013 ◽  
Vol 448-453 ◽  
pp. 3270-3276
Author(s):  
Yu Ping Wang ◽  
Yi Wu Weng ◽  
Ping Yang ◽  
Lei Tang

In this paper, three typical working fluids were selected for the near-critical ORC and subcritical ORC. The difference of performance between the near-critical ORC and subcritical ORC was analyzed by establishing the thermodynamic model. The reason for difference was analyzed in terms of the thermophysical properties. The results indicate that the performance of the near-critical ORC is better than the subcritical ORC. The net absorbed heat, net power and efficiency of the near-critical ORC vary slowly with the vapor generation temperature, which means that the near-critical ORC has good off-design performance. The dry working fluid R236fa is best adapted for the near-critical ORC among the three working fluids. The singular performance of the near-critical ORC depends on the properties of latent heat and type of working fluid in near-critical region.


Sign in / Sign up

Export Citation Format

Share Document