A Constant-Factor Approximation Algorithm for Red-Blue Set Cover with Unit Disks

Author(s):  
Raghunath Reddy Madireddy ◽  
Apurva Mudgal
2012 ◽  
Vol 22 (05) ◽  
pp. 407-419 ◽  
Author(s):  
GAUTAM K. DAS ◽  
ROBERT FRASER ◽  
ALEJANDRO LÓOPEZ-ORTIZ ◽  
BRADFORD G. NICKERSON

Given a set [Formula: see text] of n points and a set [Formula: see text] of m unit disks on a 2-dimensional plane, the discrete unit disk cover (DUDC) problem is (i) to check whether each point in [Formula: see text] is covered by at least one disk in [Formula: see text] or not and (ii) if so, then find a minimum cardinality subset [Formula: see text] such that the unit disks in [Formula: see text] cover all the points in [Formula: see text]. The discrete unit disk cover problem is a geometric version of the general set cover problem which is NP-hard. The general set cover problem is not approximable within [Formula: see text], for some constant c, but the DUDC problem was shown to admit a constant factor approximation. In this paper, we provide an algorithm with constant approximation factor 18. The running time of the proposed algorithm is [Formula: see text]. The previous best known tractable solution for the same problem was a 22-factor approximation algorithm with running time [Formula: see text].


Author(s):  
Felix Happach ◽  
Lisa Hellerstein ◽  
Thomas Lidbetter

We consider a large family of problems in which an ordering (or, more precisely, a chain of subsets) of a finite set must be chosen to minimize some weighted sum of costs. This family includes variations of min sum set cover, several scheduling and search problems, and problems in Boolean function evaluation. We define a new problem, called the min sum ordering problem (MSOP), which generalizes all these problems using a cost and a weight function defined on subsets of a finite set. Assuming a polynomial time α-approximation algorithm for the problem of finding a subset whose ratio of weight to cost is maximal, we show that under very minimal assumptions, there is a polynomial time [Formula: see text]-approximation algorithm for MSOP. This approximation result generalizes a proof technique used for several distinct problems in the literature. We apply this to obtain a number of new approximation results. Summary of Contribution: This paper provides a general framework for min sum ordering problems. Within the realm of theoretical computer science, these problems include min sum set cover and its generalizations, as well as problems in Boolean function evaluation. On the operations research side, they include problems in search theory and scheduling. We present and analyze a very general algorithm for these problems, unifying several previous results on various min sum ordering problems and resulting in new constant factor guarantees for others.


2017 ◽  
Vol 657 ◽  
pp. 111-126 ◽  
Author(s):  
Usha Mohan ◽  
Sivaramakrishnan Ramani ◽  
Sounaka Mishra

2020 ◽  
Author(s):  
Shalin Shah

<p>A clique in a graph is a set of vertices that are all directly connected</p><p>to each other i.e. a complete sub-graph. A clique of the largest size is</p><p>called a maximum clique. Finding the maximum clique in a graph is an</p><p>NP-hard problem and it cannot be solved by an approximation algorithm</p><p>that returns a solution within a constant factor of the optimum. In this</p><p>work, we present a simple and very fast randomized algorithm for the</p><p>maximum clique problem. We also provide Java code of the algorithm</p><p>in our git repository. Results show that the algorithm is able to find</p><p>reasonably good solutions to some randomly chosen DIMACS benchmark</p><p>graphs. Rather than aiming for optimality, we aim to find good solutions</p><p>very fast.</p>


2020 ◽  
Author(s):  
Shalin Shah

<p>A clique in a graph is a set of vertices that are all directly connected</p><p>to each other i.e. a complete sub-graph. A clique of the largest size is</p><p>called a maximum clique. Finding the maximum clique in a graph is an</p><p>NP-hard problem and it cannot be solved by an approximation algorithm</p><p>that returns a solution within a constant factor of the optimum. In this</p><p>work, we present a simple and very fast randomized algorithm for the</p><p>maximum clique problem. We also provide Java code of the algorithm</p><p>in our git repository. Results show that the algorithm is able to find</p><p>reasonably good solutions to some randomly chosen DIMACS benchmark</p><p>graphs. Rather than aiming for optimality, we aim to find good solutions</p><p>very fast.</p>


2013 ◽  
Vol 23 (06) ◽  
pp. 461-477 ◽  
Author(s):  
MINATI DE ◽  
GAUTAM K. DAS ◽  
PAZ CARMI ◽  
SUBHAS C. NANDY

In this paper, we consider constant factor approximation algorithms for a variant of the discrete piercing set problem for unit disks. Here a set of points P is given; the objective is to choose minimum number of points in P to pierce the unit disks centered at all the points in P. We first propose a very simple algorithm that produces 12-approximation result in O(n log n) time. Next, we improve the approximation factor to 4 and then to 3. The worst case running time of these algorithms are O(n8 log n) and O(n15 log n) respectively. Apart from the space required for storing the input, the extra work-space requirement for each of these algorithms is O(1). Finally, we propose a PTAS for the same problem. Given a positive integer k, it can produce a solution with performance ratio [Formula: see text] in nO(k) time.


Sign in / Sign up

Export Citation Format

Share Document