APPROXIMATION ALGORITHMS FOR A VARIANT OF DISCRETE PIERCING SET PROBLEM FOR UNIT DISKS

2013 ◽  
Vol 23 (06) ◽  
pp. 461-477 ◽  
Author(s):  
MINATI DE ◽  
GAUTAM K. DAS ◽  
PAZ CARMI ◽  
SUBHAS C. NANDY

In this paper, we consider constant factor approximation algorithms for a variant of the discrete piercing set problem for unit disks. Here a set of points P is given; the objective is to choose minimum number of points in P to pierce the unit disks centered at all the points in P. We first propose a very simple algorithm that produces 12-approximation result in O(n log n) time. Next, we improve the approximation factor to 4 and then to 3. The worst case running time of these algorithms are O(n8 log n) and O(n15 log n) respectively. Apart from the space required for storing the input, the extra work-space requirement for each of these algorithms is O(1). Finally, we propose a PTAS for the same problem. Given a positive integer k, it can produce a solution with performance ratio [Formula: see text] in nO(k) time.

2021 ◽  
Author(s):  
Eswara Venkata Kumar Dhulipala

A Dubin's Travelling Salesman Problem (DTSP) of finding a minimum length tour through a given set of points is considered. DTSP has a Dubins vehicle, which is capable of moving only forward with constant speed. In this paper, first, a worst case upper bound is obtained on DTSP tour length by assuming DTSP tour sequence same as Euclidean Travelling Salesman Problem (ETSP) tour sequence. It is noted that, in the worst case, \emph{any algorithm that uses of ETSP tour sequence} is a constant factor approximation algorithm for DTSP. Next, two new algorithms are introduced, viz., Angle Bisector Algorithm (ABA) and Modified Dynamic Programming Algorithm (MDPA). In ABA, ETSP tour sequence is used as DTSP tour sequence and orientation angle at each point $i_k$ are calculated by using angle bisector of the relative angle formed between the rays $i_{k}i_{k-1}$ and $i_ki_{k+1}$. In MDPA, tour sequence and orientation angles are computed in an integrated manner. It is shown that the ABA and MDPA are constant factor approximation algorithms and ABA provides an improved upper bound as compared to Alternating Algorithm (AA) \cite{savla2008traveling}. Through numerical simulations, we show that ABA provides an improved tour length compared to AA, Single Vehicle Algorithm (SVA) \cite{rathinam2007resource} and Optimized Heading Algorithm (OHA) \cite{babel2020new,manyam2018tightly} when the Euclidean distance between any two points in the given set of points is at least $4\rho$ where $\rho$ is the minimum turning radius. The time complexity of ABA is comparable with AA and SVA and is better than OHA. Also we show that MDPA provides an improved tour length compared to AA and SVA and is comparable with OHA when there is no constraint on Euclidean distance between the points. In particular, ABA gives a tour length which is at most $4\%$ more than the ETSP tour length when the Euclidean distance between any two points in the given set of points is at least $4\rho$.


2012 ◽  
Vol 22 (05) ◽  
pp. 407-419 ◽  
Author(s):  
GAUTAM K. DAS ◽  
ROBERT FRASER ◽  
ALEJANDRO LÓOPEZ-ORTIZ ◽  
BRADFORD G. NICKERSON

Given a set [Formula: see text] of n points and a set [Formula: see text] of m unit disks on a 2-dimensional plane, the discrete unit disk cover (DUDC) problem is (i) to check whether each point in [Formula: see text] is covered by at least one disk in [Formula: see text] or not and (ii) if so, then find a minimum cardinality subset [Formula: see text] such that the unit disks in [Formula: see text] cover all the points in [Formula: see text]. The discrete unit disk cover problem is a geometric version of the general set cover problem which is NP-hard. The general set cover problem is not approximable within [Formula: see text], for some constant c, but the DUDC problem was shown to admit a constant factor approximation. In this paper, we provide an algorithm with constant approximation factor 18. The running time of the proposed algorithm is [Formula: see text]. The previous best known tractable solution for the same problem was a 22-factor approximation algorithm with running time [Formula: see text].


2019 ◽  
Vol 35 (1) ◽  
pp. 57-68
Author(s):  
Nguyen Thi Phuong ◽  
Tran Vinh Duc ◽  
Le Cong Thanh

The longest path problem is known to be NP-hard. Moreover, they cannot be approximated within a constant ratio, unless ${\rm P=NP}$. The best known polynomial time approximation algorithms for this problem essentially find a path of length that is the logarithm of the optimum.In this paper we investigate the performance of an approximation algorithm for this problem in almost every case. We show that a simple algorithm, based on depth-first search, finds on almost every undirected graph $G=(V,E)$ a path of length more than $|V|-3\sqrt{|V| \log |V|}$ and so has performance ratio less than $1+4\sqrt{\log |V|/|V|}$.\


2002 ◽  
Vol 12 (06) ◽  
pp. 489-509 ◽  
Author(s):  
GRÉGOIRE MALANDAIN ◽  
JEAN-DANIEL BOISSONNAT

Given a finite set of points [Formula: see text] in ℝd, the diameter of [Formula: see text] is defined as the maximum distance between two points of [Formula: see text]. We propose a very simple algorithm to compute the diameter of a finite set of points. Although the algorithm is not worst-case optimal, an extensive experimental study has shown that it is extremely fast for a large variety of point distributions. In addition, we propose a comparison with the recent approach of Har-Peled5 and derive hybrid algorithms to combine advantages of both approaches.


2021 ◽  
Author(s):  
Eswara Venkata Kumar Dhulipala

A Dubin's Travelling Salesman Problem (DTSP) of finding a minimum length tour through a given set of points is considered. DTSP has a Dubins vehicle, which is capable of moving only forward with constant speed. In this paper, first, a worst case upper bound is obtained on DTSP tour length by assuming DTSP tour sequence same as Euclidean Travelling Salesman Problem (ETSP) tour sequence. It is noted that, in the worst case, \emph{any algorithm that uses of ETSP tour sequence} is a constant factor approximation algorithm for DTSP. Next, two new algorithms are introduced, viz., Angle Bisector Algorithm (ABA) and Modified Dynamic Programming Algorithm (MDPA). In ABA, ETSP tour sequence is used as DTSP tour sequence and orientation angle at each point $i_k$ are calculated by using angle bisector of the relative angle formed between the rays $i_{k}i_{k-1}$ and $i_ki_{k+1}$. In MDPA, tour sequence and orientation angles are computed in an integrated manner. It is shown that the ABA and MDPA are constant factor approximation algorithms and ABA provides an improved upper bound as compared to Alternating Algorithm (AA) \cite{savla2008traveling}. Through numerical simulations, we show that ABA provides an improved tour length compared to AA, Single Vehicle Algorithm (SVA) \cite{rathinam2007resource} and Optimized Heading Algorithm (OHA) \cite{babel2020new,manyam2018tightly} when the Euclidean distance between any two points in the given set of points is at least $4\rho$ where $\rho$ is the minimum turning radius. The time complexity of ABA is comparable with AA and SVA and is better than OHA. Also we show that MDPA provides an improved tour length compared to AA and SVA and is comparable with OHA when there is no constraint on Euclidean distance between the points. In particular, ABA gives a tour length which is at most $4\%$ more than the ETSP tour length when the Euclidean distance between any two points in the given set of points is at least $4\rho$.


Author(s):  
Jing Tang ◽  
Xueyan Tang ◽  
Andrew Lim ◽  
Kai Han ◽  
Chongshou Li ◽  
...  

Monotone submodular maximization with a knapsack constraint is NP-hard. Various approximation algorithms have been devised to address this optimization problem. In this paper, we revisit the widely known modified greedy algorithm. First, we show that this algorithm can achieve an approximation factor of 0.405, which significantly improves the known factors of 0.357 given by Wolsey and (1-1/e)/2\approx 0.316 given by Khuller et al. More importantly, our analysis closes a gap in Khuller et al.'s proof for the extensively mentioned approximation factor of (1-1/\sqrte )\approx 0.393 in the literature to clarify a long-standing misconception on this issue. Second, we enhance the modified greedy algorithm to derive a data-dependent upper bound on the optimum. We empirically demonstrate the tightness of our upper bound with a real-world application. The bound enables us to obtain a data-dependent ratio typically much higher than 0.405 between the solution value of the modified greedy algorithm and the optimum. It can also be used to significantly improve the efficiency of algorithms such as branch and bound.


2021 ◽  
Vol 21 (1) ◽  
pp. 15-22
Author(s):  
Aaron Lin ◽  
Konrad Swanepoel

Abstract An ordinary hypersphere of a set of points in real d-space, where no d + 1 points lie on a (d - 2)-sphere or a (d - 2)-flat, is a hypersphere (including the degenerate case of a hyperplane) that contains exactly d + 1 points of the set. Similarly, a (d + 2)-point hypersphere of such a set is one that contains exactly d + 2 points of the set. We find the minimum number of ordinary hyperspheres, solving the d-dimensional spherical analogue of the Dirac–Motzkin conjecture for d ⩾ 3. We also find the maximum number of (d + 2)-point hyperspheres in even dimensions, solving the d-dimensional spherical analogue of the orchard problem for even d ⩾ 4.


2020 ◽  
Vol 18 (02) ◽  
pp. 2050006 ◽  
Author(s):  
Alexsandro Oliveira Alexandrino ◽  
Carla Negri Lintzmayer ◽  
Zanoni Dias

One of the main problems in Computational Biology is to find the evolutionary distance among species. In most approaches, such distance only involves rearrangements, which are mutations that alter large pieces of the species’ genome. When we represent genomes as permutations, the problem of transforming one genome into another is equivalent to the problem of Sorting Permutations by Rearrangement Operations. The traditional approach is to consider that any rearrangement has the same probability to happen, and so, the goal is to find a minimum sequence of operations which sorts the permutation. However, studies have shown that some rearrangements are more likely to happen than others, and so a weighted approach is more realistic. In a weighted approach, the goal is to find a sequence which sorts the permutations, such that the cost of that sequence is minimum. This work introduces a new type of cost function, which is related to the amount of fragmentation caused by a rearrangement. We present some results about the lower and upper bounds for the fragmentation-weighted problems and the relation between the unweighted and the fragmentation-weighted approach. Our main results are 2-approximation algorithms for five versions of this problem involving reversals and transpositions. We also give bounds for the diameters concerning these problems and provide an improved approximation factor for simple permutations considering transpositions.


Author(s):  
DANIEL A. SPIELMAN ◽  
SHANG-HUA TENG ◽  
ALPER ÜNGÖR

We present a parallel Delaunay refinement algorithm for generating well-shaped meshes in both two and three dimensions. Like its sequential counterparts, the parallel algorithm iteratively improves the quality of a mesh by inserting new points, the Steiner points, into the input domain while maintaining the Delaunay triangulation. The Steiner points are carefully chosen from a set of candidates that includes the circumcenters of poorly-shaped triangular elements. We introduce a notion of independence among possible Steiner points that can be inserted simultaneously during Delaunay refinements and show that such a set of independent points can be constructed efficiently and that the number of parallel iterations is O( log 2Δ), where Δ is the spread of the input — the ratio of the longest to the shortest pairwise distances among input features. In addition, we show that the parallel insertion of these set of points can be realized by sequential Delaunay refinement algorithms such as by Ruppert's algorithm in two dimensions and Shewchuk's algorithm in three dimensions. Therefore, our parallel Delaunay refinement algorithm provides the same shape quality and mesh-size guarantees as these sequential algorithms. For generating quasi-uniform meshes, such as those produced by Chew's algorithms, the number of parallel iterations is in fact O( log Δ). To the best of our knowledge, our algorithm is the first provably polylog(Δ) time parallel Delaunay-refinement algorithm that generates well-shaped meshes of size within a constant factor of the best possible.


2007 ◽  
Vol 17 (04) ◽  
pp. 297-304 ◽  
Author(s):  
OLIVIER DEVILLERS ◽  
VIDA DUJMOVIĆ ◽  
HAZEL EVERETT ◽  
SAMUEL HORNUS ◽  
SUE WHITESIDES ◽  
...  

Given a set of n points in the plane, we consider the problem of computing the circular ordering of the points about a viewpoint q and efficiently maintaining this ordering information as q moves. In linear space, and after O(n log n) preprocessing time, our solution maintains the view at a cost of O( log n) amortized time (resp.O( log 2 n) worst case time) for each change. Our algorithm can also be used to maintain the set of points sorted according to their distance to q .


Sign in / Sign up

Export Citation Format

Share Document