A Learning-Based Iterated Local Search Algorithm for Solving the Traveling Salesman Problem

Author(s):  
Maryam Karimi-Mamaghan ◽  
Bastien Pasdeloup ◽  
Mehrdad Mohammadi ◽  
Patrick Meyer
Author(s):  
Valentina Cacchiani ◽  
Carlos Contreras-Bolton ◽  
John W. Escobar ◽  
Luis M. Escobar-Falcon ◽  
Rodrigo Linfati ◽  
...  

2020 ◽  
Author(s):  
Meng Luo ◽  
Shiliang Gu

<p>In this paper, a novel search algorithm that based on the Contraction-Expansion algorithm and integrated three operators Exchange, Move, and Flip (EMF-CE) is proposed for the traveling salesman problem (TSP). EMF-CE uses a negative exponent function to generate critical value as the feedback regulation of algorithm implementation. Also, combined Exchange Step, Move step with Flip step and constitute of more than twenty combinatorial optimizations of program elements. It has been shown that the integration of local search operators can significantly improve the performance of EMF-CE for TSPs. We test small and medium scale (51-1000 cities) TSPs were taken from the TSPLIB online library. The experimental results show the efficiency of the proposed EMF-CE for addressing TSPs compared to other state-of-the-art algorithms.</p>


2020 ◽  
Author(s):  
Meng Luo ◽  
Shiliang Gu

<p>In this paper, a novel search algorithm that based on the Contraction-Expansion algorithm and integrated three operators Exchange, Move, and Flip (EMF-CE) is proposed for the traveling salesman problem (TSP). EMF-CE uses a negative exponent function to generate critical value as the feedback regulation of algorithm implementation. Also, combined Exchange Step, Move step with Flip step and constitute of more than twenty combinatorial optimizations of program elements. It has been shown that the integration of local search operators can significantly improve the performance of EMF-CE for TSPs. We test small and medium scale (51-1000 cities) TSPs were taken from the TSPLIB online library. The experimental results show the efficiency of the proposed EMF-CE for addressing TSPs compared to other state-of-the-art algorithms.</p>


Author(s):  
Zeravan Arif Ali ◽  
Subhi Ahmed Rasheed ◽  
Nabeel No’man Ali

<span>Robust known the exceedingly famed NP-hard problem in combinatorial optimization is the Traveling Salesman Problem (TSP), promoting the skillful algorithms to get the solution of TSP have been the burden for several scholars. For inquiring global optimal solution, the presented algorithm hybridizes genetic and local search algorithm to take out the uplifted quality results. The genetic algorithm gives the best individual of population by enhancing both cross over and mutation operators while local search gives the best local solutions by testing all neighbor solution. By comparing with the conventional genetic algorithm, the numerical outcomes acts that the presented algorithm is more adequate to attain optimal or very near to it. Problems arrested from the TSP library strongly trial the algorithm and shows that the proposed algorithm can reap outcomes within reach optimal. For more details, please download TEMPLATE HELP FILE from the website.</span>


2020 ◽  
Author(s):  
Meng Luo ◽  
Shiliang Gu

<p>In this paper, a novel search algorithm that based on the Contraction-Expansion algorithm and integrated three operators Exchange, Move, and Flip (EMF-CE) is proposed for the traveling salesman problem (TSP). EMF-CE uses a negative exponent function to generate critical value as the feedback regulation of algorithm implementation. Also, combined Exchange Step, Move step with Flip step and constitute of more than twenty combinatorial optimizations of program elements. It has been shown that the integration of local search operators can significantly improve the performance of EMF-CE for TSPs. We test small and medium scale (51-1000 cities) TSPs were taken from the TSPLIB online library. The experimental results show the efficiency of the proposed EMF-CE for addressing TSPs compared to other state-of-the-art algorithms.</p>


Sign in / Sign up

Export Citation Format

Share Document