Structural Design and Testing of Digitally Manufactured Concrete Structures

Author(s):  
Domenico Asprone ◽  
Costantino Menna ◽  
Freek Bos ◽  
Jaime Mata-Falcón ◽  
Liberato Ferrara ◽  
...  
2020 ◽  
Author(s):  
Biljana Buhavac

The bridge is one of the most important buildings used to overcome natural and artificial obstacles. The paper presents a constructed culvert (small bridge) on the river Jošanica, which was designed according to EN 1990 (Basics for structural design), EN 1991-1 (Structural loads) and EN 1991-2 (design of concrete structures). line model 2D (closed frame construction) calculated in the software package Tower 7. The paper approaches the modeling of structures and taking an adequate load. It would be necessary for further research to perform omission auscultations and examine the applicability of the applied methodology for modeling and calculation of the structure.


2015 ◽  
Vol 16 (1) ◽  
pp. 51-68
Author(s):  
Kazimierz Flaga ◽  
Kazimierz Furtak

Abstract The aim of the article [1] was to discuss the application of steel-concrete composite structures in bridge engineering in the aspect of structural design, analysis and execution. It was pointed out that the concept of steel-concrete structural composition is far from exhausted and new solutions interesting from the engineering, scientific and aesthetic points of view of are constantly emerging. These latest trends are presented against the background of the solutions executed in Poland and abroad. Particular attention is focused on structures of double composition and steel-concrete structures. Concrete filled steel tubular (CFST) structures are highlighted.


2013 ◽  
Vol 655-657 ◽  
pp. 823-829 ◽  
Author(s):  
Zhi Lin Ruan ◽  
Jun Jie Gong ◽  
Meng Chang Cai ◽  
Bing Huang

In order to solve the inconsistent problem of multi-layer connection and vibration in each layer, a butterfly piezoelectric generator with multilayer cantilever beams is designed. The generator is mainly constituted by butterfly multilayer cantilever beams and mass subassembly two parts. Physical devices of butterfly generator and typical piezoelectric cantilever are fabricated respectively. The experimental setup is also put up for the testing of resonant frequency and output voltage. It can be found that each layer of multilayer generator has a similar output voltage and resonant frequency to the typical one with same geometric and material parameters. So each layer in butterfly piezoelectric generator can be simplified as a typical cantilever beam for researching and analyzing.


2020 ◽  
Vol 9 (1) ◽  
pp. 108-122
Author(s):  
Savu Adrian-Alexandru

Abstract The current paper studies the effect of superior eigen-modes on the seismic response for a series of reinforced concrete structures having eigen-periods near code control periods. Although the structural design is based on Romanian seismic design codes (“P100-1/2013 - Seismic design code - Part 1 - Design provisions for buildings” and “SR-EN 1998/2004 - Design of structures for earthquake resistance”), it carries some importance for other countries with similar seismic design spectra. A total of twenty-four models for structures were considered by varying their location (through control period values), three-dimensional regularity, overall dimensions and height regime. Results were compared and conclusions were drawn based on percentage values of relative displacements (storey drifts) and base shear forces.


2019 ◽  
Vol 12 (6) ◽  
pp. 1288-1304
Author(s):  
W. C. SANTIAGO ◽  
H. M. KROETZ ◽  
A. T. BECK

Abstract This paper presents a reliability-based calibration of partial safety factors for Brazilian codes used in the design of concrete structures. The work is based on reliability theory, which allows an explicit representation of the uncertainties involved in terms of resistances and loads. Regarding the resistances, this study considers beams with concrete of five classes (C20, C30, C40, C50 and C60), three ratios between base and effective depth (0.25, 0.50 and 0.75), three longitudinal reinforcement ratios (ρmin, 0.5% and ρmax) and three transverse reinforcement ratios ( A s s m i n, 5 . A s s m i n and A s s m a x). In terms of loads, this work considers seven ratios between live loads and permanent loads (qn/gn), and seven ratios between wind loads and permanent loads (wn/gn). The study also adopts a single value for the target reliability index (βtarget = 3.0). Results show that the optimized set of partial safety factors leads to more uniform reliability for different design situations and load combinations.


2016 ◽  
Vol 45 (5) ◽  
pp. 476-483 ◽  
Author(s):  
V. A. Komarov ◽  
E. A. Kishov ◽  
R. V. Charkviani

2021 ◽  
Vol 64 (2) ◽  
pp. 119-125
Author(s):  
Nikola Tošić ◽  
Jean Torrenti

A significant amount of research has been performed on recycled aggregate concrete (RAC), both on the material and structural level. This has enabled the formulation of material and structural resistance models that can be safely and reliably used for the structural design of RAC members and the new Eurocode 2 (EC2) will contain an informative annex detailing provisions for the design of RAC. Thus, an increased market uptake of recycled aggregate (RA) can be achieved, leading to potential sustainability improvements of concrete structures. In order to familiarize designers with the new provisions for RAC, this paper presents an example of one-way slab design using varying RA substitution ratios, as well as a parametric study on the implications of RAC provisions on slab slenderness. The results of this study show that RAC one way slabs can be successfully designed using EC2. Although such slabs might require larger depths than natural aggregate concrete slabs, their applicability in the typical slenderness range is possible.


Sign in / Sign up

Export Citation Format

Share Document