structural resistance
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 76)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Joydeep Das ◽  
Arjun Sil

The reinforced concrete (RC) bridges deteriorate essentially due to strength loss induced by aging of the structure, extreme weathering conditions, and unplanned increased service loads. However, these load variations and aging factors equally could compromise structural reliability, and service life for continuous satisfactory operation of service bridges for future performance. A reasonable model of bridge strength and applied loads becomes the basis of accurate prediction of bridge functionality. Hence, time-dependent reliability approaches could be used efficiently to gain a reliable understanding of issues facing by the bridges in the study area for appropriate solutions. In this paper, the reliability of bridges under harsh conditions studied using time-variant and time-invariant reliability models in which both load and resistance considered as a time-dependent parameter. A combination of condition rating (CR) and time-dependent load employed to attain accurate insights about the degradation of structural resistance of the existing bridges. The result shows the significant impact of aging as well as traffic loads influence in the service life of both national highways (NH) and rural road service bridges. These observations might be used to adopt appropriate planning strategies as well as rational decisions to ensure the safety of the bridges for future operation.


2022 ◽  
Vol 52 (1) ◽  
pp. 7-13
Author(s):  
SAAD TAYYAB ◽  
TUAN NOR NAZIAN TUAN MAT ◽  
ADYANI AZIZAH ABD HALIM

The conformational stability of bovine serum albumin (BSA) against urea denaturation was investigated in aqueous solutions both in the absence and presence of buffers. Various buffers differing in polar and nonpolar characters such as sodium phosphate, Tris-HCl, (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) HEPES and [3-(N-morpholino)propanesulfonic acid] MOPS buffers were used in this study. Urea-induced structural changes were analyzed using different probes, i.e., intrinsic fluorescence, ANS fluorescence and UV-difference spectral signal.  Presence of different buffers in the incubation medium offered different degrees of resistance to the protein against urea-induced structural changes compared to those obtained in water (in the absence of buffers). A similar trend of buffer-induced structural resistance was noticed with three different probes. The stabilizing effect of these buffers followed the order: MOPS > HEPES > sodium phosphate > Tris-HCl > water. As found in MOPS and HEPES  buffers, the highest stability of BSA can be attributed to the presence of morpholine and piperazine rings, respectively, in their structures. These groups might have produced a hydrophobic environment around the protein surface, thus stabilizing protein conformation against urea denaturation.


2021 ◽  
Vol 30 (4) ◽  
pp. 779-795
Author(s):  
Nader Zad ◽  
Hani Melhem

Various seismic-resistant design methods are used to ensure the stability of multi-story buildings against lateral forces caused by earthquakes. Utilization of reinforced concrete shear walls is one of the most reliable methods of design and construction of earthquake-resistant buildings because it increases structural resistance to lateral loads and stiffens and strengthens the structure, thereby minimizing earthquake-induced damages. This paper investigates the beneficial effects of using shear walls in the structural design of a typical low-rise building to improve its resistance to earthquake events. To this end, a four-story reinforced concrete structure is modeled first without shear walls, then with the addition to shear walls. The 2002 Denali Alaska earthquake is used as an example of a severe seismic excitation because it is considered the most massive strike-slip earthquake in North America in almost 150 year. SAP2000 is used to perform the dynamic analysis. In order to obtain an accurate representation of the structure’s behavior, response modal nonlinear time-history dynamic analysis is utilized to analyze and compare the response of the building with and without shear walls. Study results showed that shear walls are very effective in achieving compliance with seismic design codes. In addition, the use of shear walls significantly reduces the shear stresses, bending moments, and displacements of the various members of the structure.


Author(s):  
Shaun Gallagher ◽  
Daniel Hutto ◽  
Inês Hipólito

AbstractA number of perceptual (exteroceptive and proprioceptive) illusions present problems for predictive processing accounts. In this chapter we’ll review explanations of the Müller-Lyer Illusion (MLI), the Rubber Hand Illusion (RHI) and the Alien Hand Illusion (AHI) based on the idea of Prediction Error Minimization (PEM), and show why they fail. In spite of the relatively open communicative processes which, on many accounts, are posited between hierarchical levels of the cognitive system in order to facilitate the minimization of prediction errors, perceptual illusions seemingly allow prediction errors to rule. Even if, at the top, we have reliable and secure knowledge that the lines in the MLI are equal, or that the rubber hand in the RHI is not our hand, the system seems unable to correct for sensory errors that form the illusion. We argue that the standard PEM explanation based on a short-circuiting principle doesn’t work. This is the idea that where there are general statistical regularities in the environment there is a kind of short circuiting such that relevant priors are relegated to lower-level processing so that information from higher levels is not exchanged (Ogilvie and Carruthers, Review of Philosophy and Psychology 7:721–742, 2016), or is not as precise as it should be (Hohwy, The Predictive Mind, Oxford University Press, Oxford, 2013). Such solutions (without convincing explanation) violate the idea of open communication and/or they over-discount the reliable and secure knowledge that is in the system. We propose an alternative, 4E (embodied, embedded, extended, enactive) solution. We argue that PEM fails to take into account the ‘structural resistance’ introduced by material and cultural factors in the broader cognitive system.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tao Fu ◽  
Yang Liu ◽  
Zhixin Zhu

Damage to bridge structures caused by vessel collision is a risk for bridges crossing water traffic routes. Therefore, safety around vessel collision of existing and planned bridges is one of the key technical problems that must be solved by engineering technicians and bridge managers. In the evaluation of the reliability of the bridge structure, the two aspects of vessel-bridge collision force and structural resistance need to be considered. As there are many influencing parameters, the performance function is difficult to express by explicit function. This paper combines the moment method theory of structural reliability with finite element analysis and proposes a statistical moment method based on finite element analysis for the calculation of vessel-bridge collision reliability, which solves the structural reliability problem with a nonlinear implicit performance function. According to the probability model based on current velocity, vessel velocity, and vessel collision tonnage, the estimate points in the standard normal space are converted into estimate points in the original state space through the Rosenblatt reverse transform. According to the estimate points in the original state space and the simplified dynamic load model of vessel-bridge collision, the sample time-history curve of random vessel-bridge collision force is generated, the dynamic response of the bridge structure and the structural resistance of the bridge are calculated by establishing a finite element model, and the failure probability and reliability index of the bridge structure is calculated according to the fourth-moment method. The statistical moment based on the finite element analysis is based on the finite element analysis and the moment method theory of structural reliability. The statistical moment of the limited performance function is calculated through a quite small amount of confirmatory finite element analysis, and the structural reliability index and failure probability are obtained. The method can be widely used in existing finite element analysis programs, greatly reducing the number of finite element analyses needed and improving the efficiency of structural reliability analysis.


Author(s):  
A.V. Dvornyk ◽  
Z.Yu. Nazarenko ◽  
L.I. Lyashenko ◽  
I.M. Tkachenko

Teeth whitening is a way to restore the natural colour of teeth with applying a chemical agent that oxidizes the organic pigments of the hard dental tissues. Teeth whitening has become one of the most frequently requested dental procedures among the population. The public demands whiter, more perfect smiles, and many teeth whitening options have been made in response. To assess the changes occurring in the hard dental tissues, and, in particular, in the enamel, it is necessary to study the chemical structure of the teeth and determine the number of elements in the enamel to predict the whitening procedure outcomes and make adjustments in post-procedural care. The aim of this study was to investigate the changes in the chemical composition of the dental enamel surface after the procedure of professional hygiene and the use of 35% hydrogen peroxide for teeth whitening as the main chemical component of the whitening system. To study the trace element composition of the dental enamel, the tooth surface was segmented into areas for microanalysis. The peculiarity consisted in that the studied areas differed from the right and left sides of the tooth, because the left side in the studied teeth was the control area, and the right side allowed us to compare and contrast the chemical component of enamel in each tooth separately, by comparing the findings. The results obtained have demonstrated that there is a change in the chemical composition of the enamel in the studied teeth. The change in chemical composition indicators significantly affects the change in clinical indicators, and the strength of clinical manifestations will depend on the features of functional and structural resistance of the dental enamel. We can state that changing in the number of elements can lead to increased sensitivity during the rehabilitation period throughout which the chemical composition of the dental enamel restores.


2021 ◽  
Vol 10 (11) ◽  
pp. 424
Author(s):  
Jia Xu ◽  
Makoto Takahashi

Many disaster studies in the social sciences have so far pointed out that contemporary urbanization catalyzes the transformation of actual and potential risks into disasters. Compared with the greater attention paid to the losses of disasters, there is inadequate recognition of the roles of deep-seated social factors in addressing environmental changes and risks. In addition, very few discussions about social vulnerabilities have paid attention to China, even though they focus on developing countries. In the past four decades, China’s rapid urbanization, urban expansions, and large-scale rural-urban migration have led to increasing difficulties in urban management, generating a large number of marginalized populations and spaces that are often called urban villages. The current marginalization problems are connected with economic poverty, sustained exclusion, and social inequality under state-managed urbanization. This study aims to provide a valuable discussion on the relationship between rapid urbanization and urban marginalization to identify the underlying causes of social vulnerability from the perspectives of institution, space, and urban governance, reviewing the experiences of China’s urbanization. This study concludes that urbanization-induced marginalization has adverse impacts on structural resistance to external pressures such as natural disasters.


2021 ◽  
Vol 13 (21) ◽  
pp. 11647
Author(s):  
Mohammed Deyazada ◽  
Hervé Degée ◽  
Bram Vandoren

Since energy efficiency has become the main priority in the design of buildings, load-bearing walls in modern masonry constructions nowadays include thermal break elements at the floor–wall junction to mitigate thermal bridges. The structural stability of these bearing walls is consequently affected. In the present paper, a numerical study of the resistance and stability of such composite masonry walls, including AAC thermal break layers, is presented. A finite element mesoscopic model is successfully calibrated with respect to recent experimental results at small and medium scale, in terms of resistance and stiffness under vertical load with or without eccentricity. The model is then used to extend the numerical models to larger-scale masonry walls made of composite masonry, with the aim of investigating the consequences of thermal elements on global resistance and stability. The results confirm that the resistance of composite walls is governed by the masonry layer with the lowest resistance value, except for walls with very large slenderness and loaded eccentrically: composite walls with low slenderness or loaded by a vertical load with limited eccentricities are failing due to the crushing of the AAC layer, while the walls characterized by large slenderness ratios and loaded eccentrically tend to experience buckling failure in the main clay masonry layer.


Author(s):  
David J Milan

In July 2007 an intense summer storm resulted in significant activation of the sediment system in the Thinhope Burn, UK. Catchment- and reach-scale morphodynamic modelling is used to investigate the geomorphic work undertaken by Thinhope Burn; comparing this with the more subdued responses shown by its neighbours. Total sediment efflux for Thinhope Burn over the 10 yr period 1998-2007 was 18, 801 m3 four times that of the larger Knar Burn catchment and fifty-four times that of the smaller Glendue Burn catchment. For a discharge of 60 m3s-1, equivalent to the July 2007 Thinhope flood, sediment efflux was 575 m3, 76 m3, and 67 m3 for Thinhope, Glendue and Knar Burns respectively. It is clear that Thinhope Burn undertook significantly more geomorphic work compared to its neighbours. Analysis of the population of shear stress for reach-scale simulations on Thinhope Burn highlighted that the final three simulations (flood peaks of 60, 90, 236 m3s-1) all produced very similar distributions, with no marked increase in the modal shear stress (∼250 Nm-2). This possibly suggests that flows >60 m3s-1 are not able to exert significantly greater energy on the channel boundary, indicating that flows in the region of 60 m3s-1 attain ‘peak’ geomorphic work. It is argued that factors such as strength resistance of the key sediment sources (e.g. paleoberms perched on terraces), structural resistance to flood waves imposed by valley form resistance, location sensitivity and transmission resistance, may all offer explanations for increased geomorphic effectiveness compared with its neighbours. With the expectation of greater rainfall totals in the winter and more extreme summer events in upland areas of the UK, it is clear that attention needs to focus upon the implications of this upon the morphological stability of these areas not least to aid future sustainable flood risk management.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Aditya Rio Prabowo ◽  
Tuswan Tuswan ◽  
Arifin Nurcholis ◽  
Anandito Adam Pratama

Thin-walled stiffened panels are fundamental structural components that form the primary structure of the ship hull. The effectiveness of the stiffener configuration design needs to be assessed because members are unavoidably subjected to various load types during operations. In this situation, assessment is required to quantify the responses and determine the relationship between the structural resistance and input parameters. The aim of this work was to obtain structural resistance data on the stiffened side hull of a medium-sized tanker with various model configurations by using finite element analysis with different loading parameters, i.e., load type and angle, as the main inputs. The results indicate that stiffener configurations subjected to loads at the center and random positions influence the effectiveness in reducing the deformation. The results show that the stiffener is more effective when the location of the force is very close to the stiffener. Therefore, higher strength can be obtained with a design in which the area that is not supported by the stiffener is minimized.


Sign in / Sign up

Export Citation Format

Share Document