Structural Design and Testing of a Butterfly Piezoelectric Generator with Multilayer Cantilever Beams

2013 ◽  
Vol 655-657 ◽  
pp. 823-829 ◽  
Author(s):  
Zhi Lin Ruan ◽  
Jun Jie Gong ◽  
Meng Chang Cai ◽  
Bing Huang

In order to solve the inconsistent problem of multi-layer connection and vibration in each layer, a butterfly piezoelectric generator with multilayer cantilever beams is designed. The generator is mainly constituted by butterfly multilayer cantilever beams and mass subassembly two parts. Physical devices of butterfly generator and typical piezoelectric cantilever are fabricated respectively. The experimental setup is also put up for the testing of resonant frequency and output voltage. It can be found that each layer of multilayer generator has a similar output voltage and resonant frequency to the typical one with same geometric and material parameters. So each layer in butterfly piezoelectric generator can be simplified as a typical cantilever beam for researching and analyzing.

2015 ◽  
Vol 754-755 ◽  
pp. 481-488
Author(s):  
Bibi Nadia Taib ◽  
Norhayati Sabani ◽  
Chan Buan Fei ◽  
Mazlee Mazalan ◽  
Mohd Azarulsani Md Azidin

Thin film piezoelectric material plays a vital role in micro-electromechanical systems (MEMS), due to its low power requirements and the availability of high energy harvesting. Zinc oxide is selected for piezoelectric material because of its high piezoelectric coupling coefficient, easy to deposit on silicon substrate and excellent adhesion. Deposited ZnO and Al improve the electrical properties, electrical conductivity and thermal stability. The design, fabrication and experimental test of fabricated MEMS piezoelectric cantilever beams operating in d33 mode were presented in this paper. PVD (Physical Vapor Deposition) was selected as the deposition method for aluminium while spincoating was chosen to deposit ZnO thin film. The piezoelectric cantilever beam is arranged with self-developed experimental setup consisting of DC motor and oscilloscope. Based on experimental result, the longer length of piezoelectric cantilever beam produce higher output voltage at oscilloscope. The piezoelectric cantilevers generated output voltages which were from 2.2 mV to 8.8 mV at 50 Hz operation frequency. One of four samples achieved in range of desired output voltage, 1-3 mV and the rest samples produced a higher output voltage. The output voltage is adequate for a very low power wireless sensing nodes as a substitute energy source to classic batteries.


2011 ◽  
Vol 148-149 ◽  
pp. 1327-1330
Author(s):  
Qing He ◽  
Zhen Yan ◽  
Li Kai Fei ◽  
Bo Song

In order to improve greatly power capacity of cantilever beam piezoelectric generator, output voltage, electric charge and energy of unimorph, bimorph series connection and parallel connection is analyzed by theory models. It can be seen from analytic results that the larger output voltage and electric energy would be obtained if length is increased and width is decreased under the exterior stimulation circumstances. At the same time, bimorph series connection piezoelectric beam should be chosen preferentially.


2012 ◽  
Vol 516-517 ◽  
pp. 1848-1853
Author(s):  
Bing Feng Han ◽  
Jin Kui Chu ◽  
Fei Yao ◽  
Ye Sheng Xiong ◽  
Xin Xin Huo

The method to transfer energy by less-contact magnetic force can decrease mechanical energy loss comparing with that by mechanical contact. In this paper, a novel piezoelectric rotary generator was designed based on the theory of the transition from less-contact magnetic force to the mechanical energy. ANSYS software was used to calculate the driving forces for the piezoelectric cantilever beam from the rotary wheel rotate in the different positions. The periodic driving force for the piezoelectric cantilever beam was obtained by the methods of fitting and Fourier transform. Laws of dynamic performance for piezoelectric cantilever beam were obtained by dynamic analysis. The results show that the low-frequency and variable rotational mechanical energy in the natural environment can be harvested by this novel rotary piezoelectric generator.


2005 ◽  
Vol 888 ◽  
Author(s):  
Dongna Shen ◽  
Jyoti Ajitsaria ◽  
Song-Yul Choe ◽  
Dong-Joo Kim

ABSTRACTWith the rapid development of wireless remote sensor systems, battery is becoming the limiting factor in the lifetime of the device and miniaturization. As a way to eliminate battery in the system, the conversion of ambient vibration energy has been addressed. The piezoelectric cantilever beam with a proof mass was exploited for energy conversion since it can generate large strain and power density. The design of cantilever beams was optimized through numerical analysis and FEM simulation at higher acceleration condition. The investigated parameters influencing the output energy of piezoelectric bimorph cantilevers include dimensions of cantilever beam and proof mass. The resonant frequency and robustness of cantilever structure were also considered for enhancing power conversion efficiency and implementing devices at high acceleration condition. The power density generated by the optimized piezoelectric device was high enough (> 1200 μW/cm3) to operate microsensor systems. However, high stress near clamping area of cantilever beam could lead to the fracture at high acceleration condition.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1934 ◽  
Author(s):  
Zhi-Xin Yang ◽  
Xiao-Ting He ◽  
Hong-Xia Jing ◽  
Jun-Yi Sun

The existing studies indicate that the application of piezoelectric polymers is becoming more and more extensive, especially in the analysis and design of sensors or actuators, but the problems of piezoelectric structure are usually difficult to solve analytically due to the force–electric coupling characteristics. In this study, the bending problem of a piezoelectric cantilever beam was investigated via theoretical and experimental methods. First, the governing equations of the problem were established and non-dimensionalized. Three piezoelectric parameters were selected as perturbation parameters and the perturbation solution of the equations was finally obtained using a multi-parameter perturbation method. In addition, the relevant experiments of the piezoelectric cantilever beam were carried out, and the experimental results were in good agreement with the theoretical solutions. Based on the experimental results, the effect of piezoelectric properties on the bending deformation of piezoelectric cantilever beams was analyzed and discussed. The results indicated that the multi-parameter perturbation solution obtained in this study is effective and it may serve as a theoretical reference for the design of sensors or actuators made of piezoelectric polymers.


2016 ◽  
Vol 9 (4) ◽  
pp. 160-166 ◽  
Author(s):  
Md. Naim Uddin ◽  
Md. Shabiul Islam ◽  
Jahariah Sampe ◽  
M.S. Bhuyan ◽  
Sawal H. Md. Ali

Scanning ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-7
Author(s):  
Xiaochao Tian ◽  
Zhicong Wang ◽  
Sida Zhang ◽  
Shenfang Li ◽  
Jinlong Liu ◽  
...  

In order to solve the problem of waste heat collection from energy consumption, a thermal energy generation device combining shape memory alloy and piezoelectric materials has been designed. The shape memory alloy is heated and deformed to drive the drive wheel continuously, and the impact wheel is deformed against the piezoelectric cantilever beam during the rotation of the drive wheel to generate electricity. In this paper, the impact force generated by the impact wheel and the output voltage of the piezoelectric cantilever beam during the rotation process are given. Finally, the experimental test shows that the larger the radius of the drive wheel, the lower the impact force of the wheel and the lower the output voltage of the piezoelectric cantilever beam; the larger the diameter of the shape memory alloy wire, the higher the impact force of the wheel and the higher the output voltage of the piezoelectric cantilever beam; the more teeth of the drive wheel, the higher the impact frequency of the piezoelectric cantilever beam and the higher the output voltage. The maximum output voltage of the thermoelectric converter is 14.2 V, when the drive wheel radius is 13 mm, the shape memory alloy wire diameter is 1 mm and the number of impact wheel teeth is 6. The new structural design provides a new structural model for waste heat recovery and thermal energy generation technology. The new structural design provides a new approach and idea for waste heat recovery and thermal energy generation technology.


2020 ◽  
Vol 12 (4) ◽  
pp. 506-512
Author(s):  
Ashok Batra ◽  
Almuatasim Alomari ◽  
James Sampson ◽  
Alak Bandyopadhyay ◽  
Mohan Aggarwal

Piezoelectric energy conversion has received considerable attention for vibration-to-electric energy conversion over the past decade. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure. This paper presents a comparison between unimorph and bimorph cantilever beam having a number of segmented PMN-PT piezo-elements on the input and output power. The numerical simulation was carried out by applying the finite element analysis (FEA) using COMSOL multi-physics software in order to predict output voltage and power over a frequency range of 60–200 Hz for the first resonant frequencies. The simulation results show maximum output voltage and power harvested of 7.38 V and 135.73 μW, respectively, by the unimorph piezoelectric energy harvester at resonant frequency value of 84 Hz with electromechanical coupling factor (ke) of 77.29%. These results highlight that the highest value of the output electrical power can be obtained when the piezoelectric element is attached on the top of a clamped end of a cantilever piezoelectric beam. Moreover, in an unimorph or bimorph cantilever beam system, increasing the number of piezoelectric elements results in a higher resonant frequency shift and significantly decreasing in the harvested power.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yuejuan Li ◽  
Xulei Hou ◽  
Wei Qi ◽  
Qiubo Wang ◽  
Xiaolu Zhang

Mechanical vibrations have been an important sustainable energy source, and piezoelectric cantilevers operating at the resonant frequency are regarded as one of the effective mechanisms for converting vibration energy to electricity. This paper focuses on model and experimental investigations of multiple attached masses on tuning a piezoelectric cantilever resonant frequency. A discrete model is developed to estimate the resonant frequencies’ change of a cantilever caused by multiple masses’ distribution on it. A mechanism consisted of a piezoelectric cantilever with a 0.3 g and a 0.6 g movable mass along it, respectively, is used to verify the accuracy of the proposed model experimentally. And another mechanism including a piezoelectric cantilever with two 0.3 g attached masses on it is also measured in the designed experiment to verify the discrete model. Meanwhile, the results from the second mechanism were compared with the results from the first one in which the single attached mass is 0.6 g. Two mechanisms have wildly different frequency bandwidths and sensitivities although the total weight of attached masses is the same, 0.6 g. The model and experimental results showed that frequency bandwidth and sensitivity of a piezoelectric cantilever beam can be adjusted effectively by changing the weight, location, and quantity of attached masses.


Author(s):  
Bei Lu ◽  
Qifu Li

Cantilever beams are widely found in many different applications such as aircraft wings and microelectromechanical devices. One of the problems associated with cantilever structures is that uncontrolled tip vibrations can cause serious structural damage. This paper presents one possible solution to control the oscillation of a cantilever beam. The solution involves the use of strain gauges to measure the oscillation and piezoelectric actuators to control the tip deflection. The piezoelectric cantilever beam is modeled as a second-order system with one degree-of-freedom. The system parameters, including the natural frequency, the damping ratio, and the zeros, are identified from measurement of free and sinusoidal responses. An observer-based controller is then designed using the identified dynamics model. Simulation and experimental results demonstrate the accuracy of the model and the performance of the controller.


Sign in / Sign up

Export Citation Format

Share Document