composite wing
Recently Published Documents


TOTAL DOCUMENTS

395
(FIVE YEARS 88)

H-INDEX

21
(FIVE YEARS 4)

Author(s):  
O.V. Tatarnikov ◽  
W.A. Phyo ◽  
Lin Aung Naing

This paper describes a method for optimizing the design of a spar-type composite aircraft wing structure based on multi-criterion approach. Two types of composite wing structures such as two-spar and three-spar ones were considered. The optimal design of a wing frame was determined by the Pareto method basing on three criteria: minimal weight, minimal wing deflection, maximal safety factor and minimal weight. Positions of wing frame parts, i.e. spars and ribs, were considered as optimization parameters. As a result, an optimal design of a composite spar-type wing was proposed. All the calculations necessary to select the optimal structural and design of the spar composite wing were performed using nonlinear static finite element analysis in the FEMAP with NX Nastran software package.


Author(s):  
Chris Sungkyun Bang ◽  
Zeeshan Rana ◽  
László Könözsy ◽  
Veronica M. Rodriguez ◽  
Clive Temple

Abstract The present work focuses on an advanced coupling of computational fluid dynamics (CFD) and structural analysis (FEA) on the aeroelastic behaviour of a single element inverted composite wing with the novelty of including the ground effect. The front wing of the Formula One (F1) car can become flexible under the fluid loading due to elastic characteristics of composite materials, resulting in changing the flow field and eventually altering overall aerodynamics. The purpose of this study is to setup an accurate fluid-structure interaction (FSI) modelling framework and to assess the influence of elastic behaviour of the wing in ground effect on the aerodynamic and structural performance. Different turbulence models are studied to better capture the changes of the flow field and variation of ride heights are considered to investigate the influence of ground effect on aerodynamic phenomena. A steady-state two-way coupling method is exploited to run the FSI numerical simulations using ANSYS, which enables simultaneous calculation by coupling CFD with FEA. The effect of various composite structures on the wing performance is extensively studied concerning structure configuration, ply orientation and core materials. The numerical results generally represent good agreement with the experimental data, however, discrepancy, especially in the aerodynamic force, is presented. This may be consequence of less effective angle of attack due to the wing deflection and deterioration of vortex-induced effect. For the structural analysis, the woven structure gives rise to more stable structural deflection than the unidirectional structure despite the associated weight penalty.


Author(s):  
Aung Naing Lin ◽  
O.V. Tatarnikov ◽  
Aung Phyo Wai

The article considers the results of multicriteria optimization of the unmanned aircraft composite wing. Minimum deflection, mass and normal stresses acting along the reinforcement directions are taken as optimization criteria. The thicknesses of the load-bearing frame elements and wing skin elements were selected as optimization parameters for three types of composites: carbon fiber reinforced plastic (CFRP) based on unidirectional carbon layers, CFRP based on carbon fabric layers, and fiberglass laminate based on E-glass fiberglass. A checking calculation of the optimal composite wing stability was performed using a geometrically nonlinear model. The calculation of the stress-strain state of the wing was performed using an anisotropic linear elastic material model. Calculations were carried out using finite element software packages ANSYS and FEMAP.


2021 ◽  
Vol 1172 (1) ◽  
pp. 012003
Author(s):  
A Magdy ◽  
M Kamel ◽  
M A Elshafei ◽  
M Kassem

2021 ◽  
Author(s):  
Varakini Sanmugadas ◽  
Rikin Gupta ◽  
Wei Zhao ◽  
Rakesh K. Kapania ◽  
David K. Schmidt

2021 ◽  
Author(s):  
David Barton ◽  
Hilary Ockendon ◽  
Bernard Piette ◽  
Robert Whittaker
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document