scholarly journals Influence of Submerged Cultivation Conditions on the Titer of Active Cells of Rhizobia

2021 ◽  
pp. 147-155
Author(s):  
Mariya Yakimenko ◽  
Arina Sorokina ◽  
Stepan Begun
2011 ◽  
Vol 13 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Larissa de Souza Kirsch ◽  
Ana Carolina dos Santos Pinto ◽  
Tatiana Souza Porto ◽  
Ana Lucia Figueiredo Porto ◽  
Maria Francisca Simas Teixeira

Author(s):  
Chandrasekhar Gajula ◽  
Anuj Kumar Chandel ◽  
Radhika Konakalla ◽  
Ravinder Rudravaram ◽  
Ravindra Pogaku ◽  
...  

Groundnut shell (GS), after separation of pod, is readily available as a potential feedstock for production of fermentable sugars. The substrate was delignified with sodium sulfite. The delignified substrate released 670 mg/g of sugars after enzymatic hydrolysis (50°C, 120 rpm, 50 hrs) using commercial cellulases (Dyadic® Xylanase PLUS, Dyadic Inc. USA). The groundnut shell enzymatic hydrolysate (45.6 g/L reducing sugars) was fermented for ethanol production with free and sorghum stalks immobilized cells of Pichia stipitis NCIM 3498 under submerged cultivation conditions. Immobilization of yeast cells on sorghum stalks were confirmed by scanning electron microscopy (SEM). A maximum of ethanol production (17.83 g/L, yield 0.44 g/g and 20.45 g/L, yield 0.47 g/g) was observed with free and immobilized cells of P. stipitis respectively in batch fermentation conditions. Recycling of immobilized cells showed a stable ethanol production (20.45 g/L, yield 0.47 g/g) up to 5 batches followed by a gradual downfall in subsequent cycles.


2021 ◽  
Vol 17 (8) ◽  
Author(s):  
Ana Karoliny Ribeiro Lima ◽  
Ryhára Dias Batista ◽  
Luciana Pereira Araújo ◽  
Sabrina Ribeiro da Silva ◽  
Erika Carolina Vieira-Almeida ◽  
...  

The aim of this work was to evaluate the use of different agro-industrial residues for the production of xylanase by Aspergillus sp. ART 100.1, as well as analyzing the biochemical properties of the enzyme. Agroindustrial residues malt bagasse, pineapple crown, açaí bagasse and soybean husk present in large quantities in the Tocantins region were used to evaluate the production of xylanase. Cultivation conditions for xylanase production were evaluated in submerged and solid-state cultivation. The highest production of xylanase in submerged cultivation was obtained using soybean husk residue (23.60 U/mL), while, for solid-state cultivation conditions, the highest production of xylanase was obtained with malt bagasse (110.00 U/g). The effect of additives to the culture medium was also evaluated, with the best result for the use of the xylose additive in the pineapple crown in solid-state cultivation. The enzyme produced in solid-state cultivation was characterized in terms of pH and temperature. The optimum activity pH was observed at 5.0 and for temperature at 55 °C. The xylanase was stable in a pH range between 4 and 5 and retained 50% of its activity at 45 °C after 110 minutes. The Aspergillus sp. ART 500.1 presents potential for the production of xylanase using agro-industrial residues, enabling the development of bioprocesses for the scaling of production.


2011 ◽  
Vol 47 (9) ◽  
pp. 808-816 ◽  
Author(s):  
N. V. Shakhova ◽  
S. A. Golenkina ◽  
E. V. Stepanova ◽  
D. S. Loginov ◽  
N. V. Psurtseva ◽  
...  

2019 ◽  
pp. 26-36
Author(s):  
Tina Jokharidze ◽  
Eva Kachlishvili ◽  
Vladimir Elisashvili

In the present study, the ability of eighteen white-rot basidiomycetes was evaluated for crude oil biodegradation. Cerrena unicolor strains, Panus tigrinus 433, P. lecometei 903, Pleurotus ostreatus 70, Trametes maxima 403, and T. versicolor 159 showed especially abundant mycelial growth on the surface of agar covered with droplets of crude oil. In the submerged cultivation in the glucose (3 g/L) containing medium, complete decolorization of indicator Resazurin was observed during two weeks in the presence of Bjerkandera adusta 139, C. unicolor 303, Coriolopsis gallica 142, P. ostreatus 70, P. pulmonarius 148, and T. versicolor 159. When artificially oil-polluted soil was inoculated with fungal mycelium pre-grown on a mixture of wheat straw and mandarin peels the maximum degradation rate (65%) was obtained when C. unicolor 305 was incubated in the 1% oil-containing soil for 28 days. At the same cultivation conditions, P. ostreatus 2175 eliminated 43.9% of initial oil when its concentration in the soil was increased to 2%. In the lignocellulose-containing soil, neither glucose nor yeast extract enhanced oil degradation, but wetting of soil with the distilled water to maintain its humidity favored oil elimination. The tested WRB secreted lignin-modifying enzymes in the presence of petroleum hydrocarbons; the higher was the concentration of lignocellulosic substrate in the soil the higher was the fungi enzyme activity. However, the data received did not show any direct relationship between the fungi enzyme activity and the degree of oil elimination. Key words: mycoremediation, crude oil, basidiomycetes, cultivation conditions, lignin-modifying enzymes


2018 ◽  
Vol 84 (15) ◽  
Author(s):  
Naoki Akasaka ◽  
Saori Kato ◽  
Saya Kato ◽  
Ryota Hidese ◽  
Yutaka Wagu ◽  
...  

ABSTRACT Sake (rice wine) produced by multiple parallel fermentation (MPF) involving Aspergillus oryzae (strain RW) and Saccharomyces cerevisiae under solid-state cultivation conditions contained 3.5 mM agmatine, while that produced from enzymatically saccharified rice syrup by S. cerevisiae contained <0.01 mM agmatine. Agmatine was also produced in ethanol-free rice syrup prepared with A. oryzae under solid-state cultivation (3.1 mM) but not under submerged cultivation, demonstrating that A. oryzae in solid-state culture produces agmatine. The effect of cultivation conditions on agmatine production was examined. Agmatine production was boosted at 30°C and reached the highest level (6.3 mM) at pH 5.3. The addition of l-lactic, succinic, and citric acids reduced the initial culture pHs to 3.0, 3.5, and 3.2, respectively, resulting in a further increase in agmatine accumulation (8.2, 8.7, and 8.3 mM, respectively). Homogenate from a solid-state culture exhibited a maximum l-arginine decarboxylase (ADC) activity (74 pmol · min−1 · μg−1) at pH 3.0 at 30°C; homogenate from a submerged culture exhibited an extremely low activity (<0.3 pmol · min−1 · μg−1) under all conditions tested. These observations indicated that efficient agmatine production in ethanol-free rice syrup is achieved by an unidentified low-pH-dependent ADC induced during solid-state cultivation of A. oryzae, even though A. oryzae lacks ADC orthologs and instead possesses four ornithine decarboxylases (ODC1 to ODC4). Recombinant ODC1 and ODC2 exhibited no ADC activity at acidic pH (pH < 4.0), suggesting that other decarboxylases or an unidentified ADC is involved in agmatine production. IMPORTANCE It has been speculated that, in general, fungi do not synthesize agmatine from l-arginine because they do not possess genes encoding arginine decarboxylase. Numerous preclinical studies have shown that agmatine exerts pleiotropic effects on various molecular targets, leading to an improved quality of life. In the present study, we first demonstrated that l-arginine was a feasible substrate for agmatine production by the fungus Aspergillus oryzae RW. We observed that the productivity of agmatine by A. oryzae RW was elevated at low pH only during solid-state cultivation. A. oryzae is utilized in the production of various Asian fermented foods. The saccharification conditions optimized in the current study could be employed not only in the production of an agmatine-containing ethanol-free rice syrup but also in the production of many types of fermented foods, such as soy sauce (shoyu), rice vinegar, etc., as well as for use as novel therapeutic agents and nutraceuticals.


Sign in / Sign up

Export Citation Format

Share Document