protease production
Recently Published Documents


TOTAL DOCUMENTS

709
(FIVE YEARS 148)

H-INDEX

55
(FIVE YEARS 5)

2022 ◽  
Vol 72 (1) ◽  
Author(s):  
Bright E. Igere ◽  
Anthony I. Okoh ◽  
Uchechukwu U. Nwodo

Abstract Introduction and purpose The recent cholera spread, new cases, and fatality continue to arouse concern in public health systems; however, interventions on control is at its peak yet statistics show continuous report. This study characterized atypical and patho-significant environmental Vibrio cholerae retrieved from ground/surface/domestic water in rural-urban-sub-urban locations of Amathole District municipality and Chris Hani District municipality, Eastern Cape Province, South Africa. Methods Domestic/surface water was sampled and 759 presumptive V. cholerae isolates were retrieved using standard microbiological methods. Virulence phenotypic test: toxin co-regulated pili (tcp), choleragen red, protease production, lecithinase production, and lipase test were conducted. Serotyping using polyvalent antisera (Bengal and Ogawa/Inaba/Hikojima) and molecular typing: 16SrRNA, OmpW, serogroup (Vc-O1/O139), biotype (tcpAClas/El Tor, HlyAClas/El Tor, rstRClas/El Tor, RS1, rtxA, rtxC), and virulence (ctxA, ctxB, zot, ace, cep, prt, toxR, hlyA) genes were targeted. Result Result of 16SrRNA typing confirmed 508 (66.9%) while OmpW detected/confirmed 61 (12.01%) V. cholerae strains. Phenotypic-biotyping scheme showed positive test to polymyxin B (68.9%), Voges proskauer (6.6%), and Bengal serology (11.5%). Whereas Vc-O1/O139 was negative, yet two of the isolates harbored the cholera toxin with a gene-type ctxB and hlyAClas: 2/61, revealing atypical/unusual/dual biotype phenotypic/genotypic features. Other potential atypical genotypes detected include rstR: 7/61, Cep: 15/61, ace: 20/61, hlyAElTor: 53/61, rtxA: 30/61, rtxC: 11/61, and prtV: 15/61 respectively. Conclusion Although additional patho-significant/virulent genotypes associated with epidemic/sporadic cholera cases were detected, an advanced, bioinformatics, and post-molecular evaluation is necessary. Such stride possesses potential to adequately minimize future cholera cases associated with dynamic/atypical environmental V. cholerae strains.


2022 ◽  
Vol 82 ◽  
Author(s):  
H. Kahraman ◽  
C. C. Karaderi

Abstract In this study, we investigated the proline and protease production of different bacteria in several organic waste materials. Our aim was to produce proline and protease economically in waste that is abundantly available while reducing its environmental impact. 5 ml of different organic waste materials (OWW: Olive waste water; N.B: Nutrient Broth; EW: Eggshell; PBS: PBS buffer; PLW: Peach leaf wastes; TCW: Turkish coffee wastes; TWW: Tea waste water; WCW: Waste cheese whey; WFO: Waste frying oil) were placed in 10 ml grow tubes, inoculated and incubated for 24 h. Phosphate-buffered saline and 10% solutions of different organic wastes were added. These cultures were subsequently incubated at 37°C for 24 h. Cells were harvested at 24 h for L-proline assay. 1 ml of culture was transferred by pipette into an Eppendorf tube and centrifuged at 14,000 rpm for 20 min at room temperature. Cellular debris was removed by centrifuge and the supernatant was used for proline activity assays. Protease activity was determined using a modified method with casein as the substrate. We found that proline and protease can easily be produced economically using Turkish coffee wastes (TCW), Waste cheese whey (WCW) and Olive waste water (OWW) organic waste. We believe that this study will result in similar research leading to the economical use of these waste materials thus reducing their impact on the environment.


2021 ◽  
Vol 15 (1) ◽  
pp. 168-176
Author(s):  
Uraisha Ramlucken ◽  
Krishna Suresh Babu Naidu ◽  
Patrick Govender

Background: Human Immunodeficiency Virus 1 (HIV-1) subtype C is responsible for the majority of infections of patients in Southern Africa. The HIV protease is a primary target for the development of highly efficient anti-retroviral pharmaceuticals because of its pivotal role in the maturation of the virus in the host cell. For target validation of novel HIV protease inhibitors, there is a need for the availability of an abundance of this protease. Objective: This study reports an optimized method to produce HIV-1 protease derived from HIV-1 subtype C. Methods: It involves the use of a transgenic E. coli strain that overexpresses the native form of the enzyme via inclusion bodies. A stringent method for the isolation, purification, and renaturation resulted in the production of highly pure active HIV-1 protease. In order to facilitate an increase in protease yields, an optimized growth strategy was developed. In this regard, a chemically defined medium with lower glucose content and devoid of essential amino acids of the TCA cycle was used as an alternative to the widely used nutrient-rich Luria Bertani (LB) medium. Results: Results indicated an increase in protease yield up to twice the amount, thereby making this medium an attractive alternative for increasing biomass and HIV protease production for future research. Conclusion: An optimized method for HIV-1 protease derived from HIV-1 subtype C production using chemically defined media was established. This was achieved using a known method to isolate and purify the enzyme with the use of a specialized feeding strategy.


Author(s):  
D. Manimekalai ◽  
G. Senthilkumar ◽  
V. Ambikapathy ◽  
A. Panneerselvam

In the present study, the soil samples were collected from marine environment of Arichalmunai,  Dhanushkodi, Ramnad District, Tamilnadu ,India. Fungal species were isolated by plating method, in 50% sea water containing potato dextrose agar medium .Totally 16 fungal species were isolated and identified from the soil sample. The production of protease from Aspergillus niger , A.flavus and A. terreus by liquid state fermentation. The production of     protease  enzyme was optimized by using fermentation medium containing different substrates. The maximum protease production was observed on wheat bran, containing medium. The protease production was maximum in temperature 35ºC were recorded. Wheat bran produced the maximum level protease. The optimization work also carried out.  This study revealed that coastal environment provides impressive density of fungi in the East Coast of India and are unexplored  for microbial resources can be useful in industry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yam Prasad Aryal ◽  
Chang-Yeol Yeon ◽  
Tae-Young Kim ◽  
Eui-Seon Lee ◽  
Shijin Sung ◽  
...  

Apigenin, a natural product belonging to the flavone class, affects various cell physiologies, such as cell signaling, inflammation, proliferation, migration, and protease production. In this study, apigenin was applied to mouse molar pulp after mechanically pulpal exposure to examine the detailed function of apigenin in regulating pulpal inflammation and tertiary dentin formation. In vitro cell cultivation using human dental pulp stem cells (hDPSCs) and in vivo mice model experiments were employed to examine the effect of apigenin in the pulp and dentin regeneration. In vitro cultivation of hDPSCs with apigenin treatment upregulated bone morphogenetic protein (BMP)- and osteogenesis-related signaling molecules such as BMP2, BMP4, BMP7, bone sialoprotein (BSP), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN) after 14 days. After apigenin local delivery in the mice pulpal cavity, histology and cellular physiology, such as the modulation of inflammation and differentiation, were examined using histology and immunostainings. Apigenin-treated specimens showed period-altered immunolocalization patterns of tumor necrosis factor (TNF)-α, myeloperoxidase (MPO), NESTIN, and transforming growth factor (TGF)-β1 at 3 and 5 days. Moreover, the apigenin-treated group showed a facilitated dentin-bridge formation with few irregular tubules after 42 days from pulpal cavity preparation. Micro-CT images confirmed obvious dentin-bridge structures in the apigenin-treated specimens compared with the control. Apigenin facilitated the reparative dentin formation through the modulation of inflammation and the activation of signaling regulations. Therefore, apigenin would be a potential therapeutic agent for regenerating dentin in exposed pulp caused by dental caries and traumatic injury.


2021 ◽  
Vol 1 (3) ◽  
pp. 15-23
Author(s):  
Yaya Abubakar Gimba ◽  
Oluwatosin Kudirat Shittu ◽  
Abdulkadir Abubakar ◽  
Alhassan Hussaini Egbako

Proteolytic enzymes are ubiquitous in occurrence and find multiple applications in various industrial sectors. Although there are many microbial sources available for producing proteases, only a few are recognized as commercial producers. Utilization and recycling of renewable resources that pose threat to the environment can be systematically carried out to bring about resource productivity needed to make human activity sustainable. In the present study, we evaluated the phytochemical, antimicrobial, and protease production ability of mango seed kernel and pineapple peels. The proximate compositions and antimicrobial analysis of Mango seed kernel and pineapple peels were evaluated using standard protocols. We evaluated the protease production of Bacillus megaterium using the mango seed kernel and pineapple peels as the carbon sources. Our results revealed that mango seed kernel has low moisture, ash and crude fibre content but has high oil and crude protein content while pineapple peels have high moisture and fibre content but low in ash, crude protein and oil content. Mango seed extract also demonstrated antimicrobial activities against B. subtilis, less sensitive to B. megaterium and no activity against A. niger. However, the pineapple peel extracted is highly sensitive to B. subtilis and S aureus but demonstrated no activity against P. aeroginosa and A niger. The B. megaterium exhibited higher protease production ability when mango seed kernel was used as a carbon source at all tested concentrations. In conclusion, the information obtained from proximate and antimicrobial analysis of mango seed kernel and pineapple peels serves as a guide for the possible utilization as carbon sources for microbial enzyme production. Thus, both pineapple peel and mango seed kernel can be bio-remediated when used as carbon sources for protease production.


Sign in / Sign up

Export Citation Format

Share Document