Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations

2010 ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tamaz Vashakmadze

Abstract The basic problem of satisfaction of boundary conditions is considered when the generalized stress vector is given on the surfaces of elastic plates and shells. This problem has so far remained open for both refined theories in a wide sense and hierarchic type models. In the linear case, it was formulated by I. N. Vekua for hierarchic models. In the nonlinear case, bending and compression-expansion processes do not split and in this context the exact structure is presented for the system of differential equations of von Kármán–Mindlin–Reisner (KMR) type, constructed without using a variety of ad hoc assumptions since one of the two relations of this system in the classical form is the compatibility condition, but not the equilibrium equation. In this paper, a unity mathematical theory is elaborated in both linear and nonlinear cases for anisotropic inhomogeneous elastic thin-walled structures. The theory approximately satisfies the corresponding system of partial differential equations and the boundary conditions on the surfaces of such structures. The problem is investigated and solved for hierarchic models too. The obtained results broaden the sphere of applications of complex analysis methods. The classical theory of finding a general solution of partial differential equations of complex analysis, which in the linear case was thoroughly developed in the works of Goursat, Weyl, Walsh, Bergman, Kolosov, Muskhelishvili, Bers, Vekua and others, is extended to the solution of basic nonlinear differential equations containing the nonlinear summand, which is a composition of Laplace and Monge–Ampére operators.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012031
Author(s):  
E.A. Abdel-Rehim

Abstract The fractional calculus gains wide applications nowadays in all fields. The implementation of the fractional differential operators on the partial differential equations make it more reality. The space-time-fractional differential equations mathematically model physical, biological, medical, etc., and their solutions explain the real life problems more than the classical partial differential equations. Some new published papers on this field made many treatments and approximations to the fractional differential operators making them loose their physical and mathematical meanings. In this paper, I answer the question: why do we need the fractional operators?. I give brief notes on some important fractional differential operators and their Grünwald-Letnikov schemes. I implement the Caputo time fractional operator and the Riesz-Feller operator on some physical and stochastic problems. I give some numerical results to some physical models to show the efficiency of the Grünwald-Letnikov scheme and its shifted formulae. MSC 2010: Primary 26A33, Secondary 45K05, 60J60, 44A10, 42A38, 60G50, 65N06, 47G30,80-99


2018 ◽  
Author(s):  
Steven G. Krantz ◽  
Estela A. Gavosto ◽  
Marco M. Peloso

2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Nemat Dalir

The modified decomposition method (MDM) is improved by introducing new inverse differential operators to adapt the MDM for handling third-order singular nonlinear partial differential equations (PDEs) arising in physics and mechanics. A few case-study singular nonlinear initial-value problems (IVPs) of third-order PDEs are presented and solved by the improved modified decomposition method (IMDM). The solutions are compared with the existing exact analytical solutions. The comparisons show that the IMDM is effectively capable of obtaining the exact solutions of the third-order singular nonlinear IVPs.


2021 ◽  
Vol 13 ◽  
Author(s):  
Todor D. Todorov

  We discuss linear algebra of infinite-dimensional vector spaces in terms of algebraic (Hamel) bases. As an application we prove the surjectivity of a large class of linear partial differential operators with smooth ($\mathcal C^\infty$-coefficients) coefficients, called in the article \emph{regular}, acting on the algebraic dual $\mathcal D^*(\Omega)$ of the space of test-functions $\mathcal D(\Omega)$. The surjectivity of the partial differential operators guarantees solvability of the corresponding partial differential equations within $\mathcal D^*(\Omega)$. We discuss our result in contrast to and comparison with similar results about the restrictions of the regular operators on the space of Schwartz distribution $\mathcal D^\prime(\Omega)$, where these operators are often non-surjective. 


2019 ◽  
Vol 09 (02) ◽  
pp. 1950013 ◽  
Author(s):  
Maria Alessandra Ragusa ◽  
Veli Shakhmurov

The paper is the first part of a program devoted to the study of the behavior of operator-valued multipliers in Morrey spaces. Embedding theorems and uniform separability properties involving [Formula: see text]-valued Morrey spaces are proved. As a consequence, maximal regularity for solutions of infinite systems of anisotropic elliptic partial differential equations are established.


Sign in / Sign up

Export Citation Format

Share Document